精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx,g(x)=ex
(1)确定方程f(x)=$\frac{x+1}{x-1}$实数根的个数;
(2)我们把与两条曲线都相切的直线叫作这两条曲线的公切线,试确定曲线y=f(x),y=g(x)公切线的条数,并证明你的结论.

分析 (1)先化简方程得:lnx-1=$\frac{2}{x-1}$.分别作出y=lnx-1和y=$\frac{2}{x-1}$的函数图象,通过图象的交点个数来判断方程的解的个数;
(2)先确定曲线y=f(x),y=g(x)公切线的条数,设出切点坐标并求出两个函数导数,根据导数的几何意义列出方程组,化简后利用(1)的结论即可证明.

解答 解:(1)由题意得lnx=$\frac{x+1}{x-1}$=1+$\frac{2}{x-1}$,即lnx-1=$\frac{2}{x-1}$.
分别作出y=lnx-1和y=$\frac{2}{x-1}$的函数图象,由图象可知:y=lnx-1和y=$\frac{2}{x-1}$的函数图象有两个交点,
∴方程f(x)=$\frac{x+1}{x-1}$有两个实根;
(2)解:曲线y=f(x),y=g(x)公切线的条数是2,证明如下:
设公切线与f(x)=lnx,g(x)=ex的切点分别为(m,lnm),(n,en),m≠n,
∵f′(x)=$\frac{1}{x}$,g′(x)=ex
∴$\left\{\begin{array}{l}{\frac{1}{m}={e}^{n}}\\{\frac{lnm-{e}^{n}}{m-n}=\frac{1}{m}}\end{array}\right.$,化简得(m-1)lnm=m+1,
当m=1时,(m-1)lnm=m+1不成立;
当m≠1时,(m-1)lnm=m+1化为lnm=$\frac{m+1}{m-1}$,
由(1)可知,方程lnm=$\frac{m+1}{m-1}$有两个实根,
∴曲线y=f(x),y=g(x)公切线的条数是2条.

点评 本题考查导数的几何意义,求导公式和法则,考查方程思想、数形结合思想,方程根的个数判断,作出函数图象是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若X是一个随机变量,则E(X-E(X))的值为(  )
A.2E(X)B.0C.E(X)D.无法求

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinθ+cosθ=$\frac{2\sqrt{10}}{5}$,则tan(θ+$\frac{π}{4}$)=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网格纸上小正方形的边长为,粗实线和虚线画出的是某四面体的三视图,则该多面体的各条棱中,最长的棱的长度是(  )
A.2$\sqrt{5}$B.4$\sqrt{2}$C.6D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,内角A,B,C的对边分别是a,b,c,角B为锐角,且sin2B=8sinA•sinC,则$\frac{b}{a+c}$的取值范围为$(\frac{{\sqrt{6}}}{3},\frac{{2\sqrt{5}}}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,记数列$\{\frac{1}{f(n)}\}$的前n项和为Sn,则S2016的值为(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2014}{2015}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a:b:c=3:5:7,则此三角形中最大角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5按x升幂排列为2+20x+10x2

查看答案和解析>>

同步练习册答案