精英家教网 > 高中数学 > 题目详情
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品在该售价的基础上每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(14分)
(1)求的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(1)为正整数);
(2)当售价定为每件55或56元,最大的月利润是2400元;

试题分析:(1)为正整数);
(2)时,有最大值2402.5.
,且为正整数,当时, (元),当时,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元;。
点评:本题考查函数模型的建立及解决实际问题的能力,同时也考查学生的计算能力,属于基础题型。在写函数解析式的时候,不要忘记写函数的定义域。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则=      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3),
⑴求()的解析式.
⑵求上的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)如果函数上是单调减函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于实数a和b,定义运算“*”:,设,且关于x的方程恰有三个互不相等的实数根,则实数的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,定义域为[0,∞)的函数是 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f (x)的定义域为M,具有性质P:对任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;
(2)若M为自然数集N,并满足对任意xM,都有f (x)∈N. 记d(x)=f (x+1)-f (x).
(ⅰ) 求证:对任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求证:存在整数0≤cd(1)及无穷多个正整数n,满足d(n)=c.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知某公司生产某品牌服装的年固定成木为10万元,每生产一千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每销售一千件的收入为R(x)万元,且

(注:年利润=年销售收入一年总成本)
(1)写出年利润W(万元)关于年产品x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

同步练习册答案