精英家教网 > 高中数学 > 题目详情

【题目】已知x,y满足线性约束条件 ,若z=x+4y的最大值与最小值之差为5,则实数λ的值为(
A.3
B.
C.
D.1

【答案】A
【解析】解:作出不等式组对应的平面区域, 由得A(1,4),B(λ,λ﹣3)
由z=x+4y,得y=﹣ x+
平移直线y=﹣ x+ ,由图象可知当直线经过点A时,直线y=﹣的截距最大,此时z最大.
z=1+4×4=17
当直线经过点B时,直线的截距最小,此时z最小.z=λ﹣3+4λ=5λ﹣3.
∵z=x+4y的最大值与最小值得差为5
∴17﹣(5λ﹣3)=20﹣5λ=5.
得λ=3.
故选:A.

作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值和最小值.建立方程关系进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C: =1(a>b>0)的离心率为e= ,直线l被圆O截得的弦长与椭圆的长轴长相等.
(I)求椭圆C的方程;
(II)过点(3,0)作直线l,与椭圆C交于A,B两点设 (O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差为正数的等差数列,a2和 a5是方程x2﹣12x+27=0 的两实数根,数列{bn}满足3n1bn=nan+1﹣(n﹣1)an
(Ⅰ)求an与bn
(Ⅱ)设Tn为数列{bn}的前n项和,求Tn , 并求Tn<7 时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在队内羽毛球选拔赛中,选手M与B1 , B2 , B3三位选手分别进行一场对抗赛,按以往多次比赛的统计,M获胜的概率分别为 ,且各场比赛互不影响.
(1)若M至少获胜两场的概率大于 ,则M入选下一轮,否则不予入选,问M是否会入选下一轮?
(2)求M获胜场数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是双曲线 的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则 Γ的离心率为(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ: +y2=1(a>1)的左焦点为F1 , 右顶点为A1 , 上顶点为B1 , 过F1 , A1 , B1三点的圆P的圆心坐标为( ).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l:y=kx+m(k,m为常数,k≠0)与椭圆Γ交于不同的两点M和N.
(i)当直线l过E(1,0),且 +2 = 时,求直线l的方程;
(ii)当坐标原点O到直线l的距离为 时,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若F1 , F2是椭圆C: + =1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M. (Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0, )的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.

查看答案和解析>>

同步练习册答案