精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率(
A.
B.
C.
D.

【答案】A
【解析】解:由题意知本题是一个几何概型,设甲到的时间为x,乙到的时间为y, 则试验包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},
事件对应的集合表示的面积是s=1,
满足条件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y﹣x< 或y>x},
则B(0, ),D( ,1),C(0,1),
则事件A对应的集合表示的面积是1﹣ × × + ×1×1= ,根据几何概型概率公式得到P=
所以甲、乙两人能见面的概率是1﹣
故选A.

【考点精析】本题主要考查了几何概型的相关知识点,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x)满足:f(x+1)=f(x﹣1),且当﹣1<x<0时,f(x)=2x﹣1,则f(log220)等于(
A.
B.﹣
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(Ⅰ)求证:AM⊥平面EBC;
(Ⅱ)求二面角A﹣EB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2 , g(x)=alnx.
(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;
(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1 , x2 , 都有 >2恒成立,求实数a的取值范围;
(3)若在[1,e]上存在一点x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(﹣1, )是椭圆E: =1(a>b>0)上一点,F1 , F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A,B是椭圆E上两个动点,满足: (0<λ<4,且λ≠2),求直线AB的斜率.
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D′EC的位置,使D′A=2 ,如图<2>:若G,H分别为D′B,D′E的中点.
(1)求证:GH⊥平面AD′C;
(2)求平面D′AB与平面D′CE的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在研究函数 f ( x )= 的性质时,某同学受两点间距离公式启发,将f(x)变形为f(x)= ,并给出关于函数f(x)以下五个描述:
①函数 f(x)的图象是中心对称图形;
②函数 f(x)的图象是轴对称图形;
③函数 f(x)在[0,6]上是增函数;
④函数 f(x)没有最大值也没有最小值;
⑤无论m为何实数,关于x的方程 f(x)﹣m=0都有实数根.
其中描述正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足线性约束条件 ,若z=x+4y的最大值与最小值之差为5,则实数λ的值为(
A.3
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是( ) ①命题“x∈R,x3﹣x2+1≤0”的否定是“
②“ ”是“三个数a,b,c成等比数列”的充要条件;
③“m=﹣1”是“直线mx+(2m﹣1)y+1=0和直线3x+my+2=0垂直”的充要条件:
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案