精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求的最小正周期和最小值;
(2)若,求的值.

(1)最小正周期为,最小值为:;(2).

解析试题分析:(1)由二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数即可;(2)由函数的性质,将代入(1)解析式的x位置,可求得的值,再一步求得的值.
试题解析:(1)
所以,当时,有最小值
(2)
所以
因为,所以,所以,所以
考点:1、三角恒等变换;2、三角函数的基本运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;
(2)设.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中
(1)求函数的最小正周期,并从下列的变换中选择一组合适变换的序号,经过这组变换的排序,可以把函数的图像变成的图像;(要求变换的先后顺序)
①纵坐标不变,横坐标变为原来的倍,
②纵坐标不变,横坐标变为原来的2倍,
③横坐标不变,纵坐标变为原来的倍,
④横坐标不变,纵坐标变为原来的倍,
⑤向上平移一个单位,
⑥向下平移一个单位,
⑦向左平移个单位,
⑧向右平移个单位,
⑨向左平移个单位,
⑩向右平移个单位,
(2)在中角对应边分别为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半径为2,圆心角为的扇形,是扇形的内接矩形.
(Ⅰ)当时,求的长;
(Ⅱ)求矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量设函数.
的最小正周期与单调递增区间;
中,分别是角的对边,若的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ) 求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中常数
(1)若上单调递增,求的取值范围;
(2)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,区间)满足:上至少含有30个零点,在所有满足上述条件的中,求的最小值.

查看答案和解析>>

同步练习册答案