精英家教网 > 高中数学 > 题目详情
3.方程y2=ax+b与y2=ax2-b表示的曲线在同一坐标系中的位置可以是图中的    (  )
A.B.C.D.

分析 y2=ax2-b可化为y2-ax2=-b,从而由椭圆知-1<a<0,b<0,再判断抛物线即可.

解答 解:y2=ax2-b可化为y2-ax2=-b,
由图象可知,-1<a<0,b<0,
故y2=ax+b开口向左,
故选A.

点评 本题考查了圆锥曲线的应用,同时考查了数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数yi=$\frac{1}{({x}_{i}+1)({x}_{i}+2)}$,令xi=i,则y1+y2+y3…+y20=(  )
A.$\frac{16}{37}$B.$\frac{15}{41}$C.$\frac{5}{11}$D.$\frac{19}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知三角形的边长分别为3$\sqrt{2}$、6、3$\sqrt{10}$,则它的最大内角的度数是(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的函数f(x)是奇函数,且当x>0时,f(x)=ex+1,则x∈R时,f(x)=$\left\{\begin{array}{l}{{e}^{x}+1,}&{x>0}\\{0,}&{x=0}\\{-{e}^{-x}-1,}&{x<0}\end{array}\right.$,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax+b,且f(3)=7,f(5)=-1,求f(0),f(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是R上的奇函数,且在R上是减函数,若f(a-1)+f(1)>0.则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}+1(x≤0)}\\{-x+1(x>0)}\end{array}\right.$,则f(a2)与f(a-1)的大小关系是f(a2)<f(a-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A={-1,3,m},集合B={3,m2},若B⊆A,则实数m=1或0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求满足下列条件的f(x):
(1)f(x-$\frac{1}{x}$)=$\frac{{x}^{2}}{1{+x}^{4}}$;
(2)2f(x)+f(1-x)=x2

查看答案和解析>>

同步练习册答案