Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÈôM£¬N·Ö±ðÊÇÇúÏߦÑ=2cos¦ÈºÍÉϵĶ¯µã£¬ÔòM£¬NÁ½µã¼äµÄ¾àÀëµÄ×îСֵÊÇ    £®
B£®£¨Ñ¡ÐÞ4-5 ²»µÈʽѡ½²£©Èô²»µÈʽ¶ÔÓÚÒ»ÇзÇÁãʵÊýx¾ù³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª    £®
C£®£¨Ñ¡ÐÞ4-1 ¼¸ºÎÖ¤Ã÷Ñ¡½²£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬Ô²OµÄ¸îÏßPBA¹ýÔ²ÐÄO£¬ÏÒCD½»ABÓÚµãE£¬ÇÒ¡÷COE¡«¡÷PDE£¬PB=OA=2£¬ÔòPEµÄ³¤µÈÓÚ    £®
¡¾´ð°¸¡¿·ÖÎö£ºA¡¢¿ÉÒÔÏȽ«¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬M¡¢NÊÇÖ±ÏßÓëÔ²ÉϵÄÁ½¸ö¶¯µã£¬×îС¾àÀëΪԲÐĵ½Ö±ÏߵľàÀë¼õÈ¥°ë¾¶¼´¿É£»
B¡¢ÀûÓþø¶ÔÖµÒÔ¼°»ù±¾²»µÈʽÇó³öµÄ·¶Î§£¬±í´ïʽת»¯Îª¹ØÓÚaµÄ¾ø¶ÔÖµ²»µÈʽ£¬Çó³öaµÄ·¶Î§£®
C¡¢ÓÉÒÑÖªÖÐOA=2£¬ÎÒÃǿɵÃÔ²µÄ°ë¾¶Îª2£¬ÓÉÏཻÏÒ¶¨Àí¼°Èý½ÇÐÎÏàËƵÄÐÔÖÊ£¬ÎÒÃÇ¿ÉÒԵõ½AF•BF=OF•PF£¬½áºÏPB=OA=2£¬Çó³öBF³¤£¬½ø¶ø¼´¿ÉÇó³öPFµÄ³¤£®
½â´ð£º½â£ºA¡¢ÇúÏߦÑ=2cos¦ÈºÍ
¿É»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ£ºx-y+1=0Ó루x-1£©2+y2=1
¡àM¡¢NÔÚÖ±ÏßÓëÔ²ÐÄ£¨1£¬0£©°ë¾¶Îª1µÄÔ²ÉÏ
Ô²ÐÄ£¨1£¬0£©µ½Ö±ÏߵľàÀë
¡àM£¬NÁ½µã¼äµÄ¾àÀëµÄ×îСֵ 
¹Ê´ð°¸Îª£º
B¡¢¡ß£¬¡à|a-2|+1£¼2£¬
¼´|a-2|£¼1£¬½âµÃ1£¼a£¼3£®
ʵÊýaµÄÈ¡Öµ·¶Î§Îª£º£¨1£¬3£©£»
¹Ê´ð°¸Îª£º1£¼a£¼3£®
C¡¢¡ßPB=OA=2£¬
¡àOC=OB=2
ÓÉÏཻÏÒ¶¨ÀíµÃ£ºDF•CF=AF•BF
ÓÖ¡ß¡÷COF¡×¡÷PDF£¬
¡àDF•CF=OF•PF
¼´AF•BF=OF•PF
¼´£¨4-BF£©•BF=£¨2-BF£©•£¨2+BF£©
½âµÃBF=1
¹ÊPF=PB+BF=3
¹Ê´ð°¸Îª£º3£®
µãÆÀ£º±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±êÖ®¼äµÄת»¯£¬µãµ½Ö±ÏߵľàÀ룬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬ºã³ÉÁ¢ÎÊÌâµÄ³ÉÁ¢·½·¨£¬ÒÔ¼°Ô²ÓëÈý½ÇÐÎÏà¹Ø֪ʶ£®»­³ö¼ÆËãÄÜÁ¦£¬×ª»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÑ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨1£©ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=1+2t
y=at2
£¨tΪ²ÎÊý£¬a¡ÊR£©£¬µãM£¨5£¬4£©ÔÚÇúÏßC ÉÏ£¬ÔòÇúÏßCµÄÆÕͨ·½³ÌΪ
 
£®
£¨2£©ÒÑÖª²»µÈʽx+|x-2c|£¾1µÄ½â¼¯ÎªR£¬ÔòÕýʵÊýcµÄÈ¡Öµ·¶Î§ÊÇ
 
£®
£¨3£©Èçͼ£¬PCÇÐÔ²OÓÚµãC£¬¸îÏßPAB¾­¹ýÔ²ÐÄA£¬PC=4£¬PB=8£¬ÔòS¡÷OBC
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÑ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©½«²ÎÊý·½³Ì
x=e2+e-2
y=2(e2-e-2)
£¨eΪ²ÎÊý£©»¯ÎªÆÕͨ·½³ÌÊÇ
 
£®
B£®£¨Ñ¡ÐÞ4-5 ²»µÈʽѡ½²£©²»µÈʽ|x-1|+|2x+3|£¾5µÄ½â¼¯ÊÇ
 
£®
C£®£¨Ñ¡ÐÞ4-1 ¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬ADÊǸßÏߣ¬CEÊÇÖÐÏߣ¬|DC|=|BE|£¬DG¡ÍCEÓÚG£¬ÇÒ|EC|=8£¬Ôò|EG|=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨1£©£¨²»µÈʽѡ½²£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x-1|+|x-5|-a£©£¬µ±º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪRʱ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
£¨-¡Þ£¬4£©
£¨-¡Þ£¬4£©

£¨2£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ABÊÇ°ëÔ²OµÄÖ±¾¶£¬µãCÔÚ°ëÔ²ÉÏ£¬CD¡ÍAB£¬´¹×ãΪD£¬ÇÒAD=5DB£¬Éè¡ÏCOD=¦È£¬Ôòtan¦ÈµÄֵΪ
5
2
5
2
£®

£¨3£©£¨×ø±êϵÓë²ÎÊý·½³Ì£©Ô²O1ºÍÔ²O2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=-4sin¦È£¬Ôò¾­¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ
y=x+2
y=x+2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÈôM£¬N·Ö±ðÊÇÇúÏߦÑ=2cos¦ÈºÍ¦Ñsin(¦È-
¦Ð
4
)=
2
2
ÉϵĶ¯µã£¬ÔòM£¬NÁ½µã¼äµÄ¾àÀëµÄ×îСֵÊÇ
2
-1
2
-1
£®
B£®£¨Ñ¡ÐÞ4-5 ²»µÈʽѡ½²£©Èô²»µÈʽ|x+
1
x
|£¾|a-2|+1
¶ÔÓÚÒ»ÇзÇÁãʵÊýx¾ù³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
1£¼a£¼3
1£¼a£¼3
£®
C£®£¨Ñ¡ÐÞ4-1 ¼¸ºÎÖ¤Ã÷Ñ¡½²£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬Ô²OµÄ¸îÏßPBA¹ýÔ²ÐÄO£¬ÏÒCD½»ABÓÚµãE£¬ÇÒ¡÷COE¡«¡÷PDE£¬PB=OA=2£¬ÔòPEµÄ³¤µÈÓÚ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•Î¼ÄÏÈýÄ££©Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A¡¢£¨²»µÈʽѡ½²£©Èô¹ØÓÚxµÄ·½³Ìx2+4x+|a-1|=0ÓÐʵ¸ù£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
[-3£¬5]
[-3£¬5]

B¡¢£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ADÊÇ¡ÑOµÄÇÐÏߣ¬ACÊÇ¡ÑOµÄÏÒ£¬¹ýC×÷ADµÄ´¹Ïߣ¬´¹×ãΪB£¬CBÓë¡ÑOÏཻÓÚµãE£¬AEƽ·Ö¡ÏCAB£¬ÇÒAE=2£¬ÔòAC=
2
3
2
3
 
C¡¢£¨×ø±êϵÓë²ÎÊý·½³Ì£©ÒÑÖªÖ±Ïß
x=1-2t
y=
3
+t.
£¨tΪ²ÎÊý£©ÓëÔ²¦Ñ=4cos(¦È-
¦Ð
3
)
ÏཻÓÚA¡¢BÁ½µã£¬Ôò|AB|=
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸