精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为正方形,对角线相交于点O,PA⊥底面ABCD。
(Ⅰ)当E为PA的中点时,求证:PC∥平面EBD;
(Ⅱ)在侧棱PB上是否存在一点F,使得OF⊥AB,若存在,请说出点F的位置,并给予证明;若不存在,请说明理由。

(Ⅰ)证明:连接EO,
由已知,得O是AC的中点,E为PA的中点,
∴EO∥PC,
又∵EO平面EBD,PC平面EBD,
∴PC∥平面EBD;
(Ⅱ)答:存在,且点F是侧棱PB的中点,
在平面PAB内作FH⊥AB,H为垂足,连接HO,OF,
由已知,得PA⊥AB,
∴FH∥PA,
∴H是AB的中点,
又∵O是AC的中点,
∴OH∥CB,
由已知,得CB⊥AB,
∴OH⊥AB,
∵FH∩OH=H,
∴AB⊥平面HOF,
又∵OF平面HOF,
∴OF⊥AB。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案