精英家教网 > 高中数学 > 题目详情
12.甲、乙两名考生填报志愿,要求甲、乙只能在A、B、C这3所院校中选择一所填报志愿.假设每位同学选择各个院校是等可能的,则院校A、B至少有一所被选择的概率为$\frac{8}{9}$.

分析 院校A、B至少有一所被选择的对立事件是院校A、B都没有被选择,由此利用对立事件概率计算公式能求出院校A、B至少有一所被选择的概率.

解答 解:甲、乙两名考生填报志愿,要求甲、乙只能在A、B、C这3所院校中选择一所填报志愿.
假设每位同学选择各个院校是等可能的,
则基本事件总数n=3×3=9,
院校A、B至少有一所被选择的对立事件是院校A、B都没有被选择,
∴院校A、B至少有一所被选择的概率:
p=1-$\frac{1}{9}$=$\frac{8}{9}$.
故答案为:$\frac{8}{9}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设全集U={1,2,3,4,5,6,7},M={2,3,4,5,6},N={1,4,5},则(∁UM)∩N等于(  )
A.{1,2,4,5,7}??B.{1,4,5}??C.{1}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果关于x的不等式3x2-a≤0的正整数解是1,2,3,那么实数a的取值范围是(  )
A.27≤a<48B.27<a<48C.a<48D.a>27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和为Sn,对任意n∈N*都有Sn=$\frac{2}{3}$an-$\frac{1}{3}$,若-1<Sk<2,则正整数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|y=$\sqrt{x+2}$+$\frac{1}{{\sqrt{x-2}}}$},B={x|a<x<a+1},若A∩B=B,则实数a的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两平行直线3x+y-3=0与6x+2y+1=0之间的距离为(  )
A.4B.$\frac{2}{13}$$\sqrt{13}$C.$\frac{5}{26}$$\sqrt{13}$D.$\frac{7}{20}$$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sin($\frac{9π}{2}$+α)=$\frac{1}{3}$,那么cosα=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=|3x-1|,a∈[$\frac{1}{3},1)$,若函数u(x)=f(x)-a有两个不同的零点x1、x2(x1<x2),υ(x)=f(x)$-\frac{a}{2a+1}$有两个不同的零点x3、x4(x3<x4),则(x4-x3)+(x2-x1)的最小值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.比较两个实数的大小:0.5-2>0.5-0.8(填上“>或<“).

查看答案和解析>>

同步练习册答案