精英家教网 > 高中数学 > 题目详情
研究“刹车距离”对于安全行车及分析交通事故责任都有一定的作用,所谓“刹车距离”就是指行驶中的汽车,从刹车开始到停止,由于惯性的作用而又继续向前滑行的一段距离.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得的数据如表:
刹车时的车速(km/h)0102030405060
刹车距离(m)00.31.02.13.65.57.8
(1)以车速为x轴,以刹车距离为y轴,在给定坐标系中画出这些数据的散点图;
(2)观察散点图,估计函数的类型,并确定一个满足这些数据的函数表达式;
(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度为多少?请问在事故发生时,汽车是超速行驶还是正常行驶?
考点:函数解析式的求解及常用方法,散点图
专题:函数的性质及应用
分析:(1)依题意描点即可.
(2)设抛物线为y=ax2+bx+c,再根据表格中所给数据可得方程组,解出a,b,c即可.
(3)当y=46.5时,代入函数关系式解出x的值,根据题意进行取舍即可.
解答: (1)解如图所示
(2)2)根据图象可估计为抛物线.
∴设y=ax2+bx+c.
把表内前三对数代入函数,可得
c=0
100a+10b+c=0.3
400a+20b+c=1.2

解得:
a=0.002
b=0.01
c=0

∴y=0.002x2+0.01x(0≤x≤140).
经检验,其他各数均满足函数(或均在函数图象上);
(3)当y=46.5时,46.5=0.002x2+0.01x.
整理可得x2+5x-23250=0.
解之得x1=150,x2=-155(不合题意,舍去).
所以可以推测刹车时的速度为150千米/时.
∵150>140,
∴汽车发生事故时超速行驶.汽车属于超速行驶.
点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U=R,A={x|x2-2x≤0},B={y|y=cosx,x∈R},则图中阴影部分表示的区间是(  )
A、[0,1]
B、[-1,2]
C、(-∞,-1)∪(2,+∞)
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的上、下焦点,F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t),kt≠0交椭圆C于A,B两点,若椭圆C上一点P满足
OA
+
OB
OP
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年4月10日至12日,第七届中国西部国际化工博览会在成都举行,为了使志愿者更好地服务于大会,主办方决定对40名志愿者进行一次考核,考核分为两个科目:“成都文化”和“志愿者知识”,其中“成都文化”的考核成绩为10分,8分,6分,4分共四个档次;“志愿者知识”的考核结果分为A、B、C、D共四个等级,这40名志愿者的考核结果如表:
成都文化(分值)
人数
志愿者知识等级
10分 8分 6分 4分
A 5 1 7 0
B 3 2 7 1
C 1 0 6 3
D 1 1 2 0
(1)求这40名志愿者“成都文化”考核成绩的平均值;
(2)从“成都文化”考核成绩为10分的志愿者中挑选3人,记“志愿者知识”考核结果为A等级的人数为ξ.求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知四点A(
2
3
),B(-2,0),C(
6
,1),D(-
2
,-
3
)中有且只有三点在椭圆E: 
x2
a2
+
y2
b2
=1(a>b>0)上.
(1)求椭圆E的方程;
(2)若P是圆x2+y2=12上的一个动点,过动点P作直线l1、l2,使得l1、l2与椭圆E都相切,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设点P在曲线y=x2,从原点向A(2,4)移动,让直线OP与曲线y=x2所围成图形面积为S1,直线OP、直线x=2与曲线y=x2所围成图形的面积为S2
(1)当S1=S2时,求点P的坐标;
(2)当S1+S2有最小值时,求点P的坐标及此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-2
的定义域为A,函数g(x)=
2
x
(1≤x≤2)的值域为B.
(Ⅰ)求A∩B;
(Ⅱ)若C={y|a<y<2a-1},且C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市进行促销活动,规定消费者消费每满100元可抽奖一次.抽奖规则:从装有三种只有颜色不同的球的袋中随机摸出一球,记下颜色后放回,依颜色分为一、二、三等奖,一等奖奖金15元,二等奖奖金10元,三等奖奖金5元.活动以来,中奖结果统计如图所示.消费者甲购买了238元的商品,准备参加抽奖.以频率作为概率,解答下列各题.
(Ⅰ)求甲恰有一次获得一等奖的概率;
(Ⅱ)求甲获得20元奖金的概率;
(Ⅲ)记甲获得奖金金额为X,求X的分布列及期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R,满足2≤y≤4-x,x≥1,则
x2+y2+2x-2y+2
xy-x+y-1
的最大值为
 

查看答案和解析>>

同步练习册答案