精英家教网 > 高中数学 > 题目详情
如图,矩形中,平面的中点.

(1)求证:平面
(2)若,求平面与平面所成锐二面角的余弦值.
(1)证明线面平行,关键是证明线线平行,然后结合判定定理得到。
(2)

试题分析:(1)连接

四边形为平行四边形

平面
平面                            3分
(2)以为原点,AB、AD、AP为x、y、z方向建立空间直角坐标系
易得,则         5分
 ,
由此可求得平面的法向量            7分
又平面的法向量
两平面所成锐二面角的余弦值为.        10分
点评:主要是考查了线面平行的判定以及二面角的平面角的求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是边长为3的正方形,与平面所成的角为.

(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在直三棱柱ABCA1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2aBB1=3aDA1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.

(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体中,

(1)求直线所成角;
(2)求直线所成角的正弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,P—ABCD是正四棱锥,是正方体,其中

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面是正方形,侧棱底面,,的中点.
(1)证明平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且,则等于(  )
A.B.9C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是轴,轴正方向上的单位向量,。若用?来表示的夹角,则?等于    (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案