精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(1)求数列{an}的通项公式;
(2)设Q={x|x=kn,n∈N*},R={x|x=2a,n∈N*},等差数列{cn}的任一项cn∈Q∩R,其中c1是Q∩R中的最小数,110<c10<115,求{cn}的通项公式.
(1)因为点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,
所以Sn=n2+2n,当n≥2时,an=Sn-Sn-1=2n+1,
当n=1时,an=3满足上式,
所以数列{an}的通项公式an=2n+1;
(2)由f(x)=x2+2x求导得f′(x)=2x+2,
∴kn=2n+2,∴Q={x|x=2n+2,n∈N*},又R={x|x=4n+2,n∈N*},
所以Q∩R=R,又cn∈Q∩R,其中c1是Q∩R中的最小数,所以c1=6,
又{cn}是公差为4的倍数的等差数列,
所以令c10=4m+6,又110<c10<115,解得m=27,
所以c10=114,设等差数列{cn}的公差为d,则c10-c10=9d,d=12.
所以{cn}的通项公式cn=6+(n-1)×12=12n-6.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案