【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥中,平面,,是的中点.
(1)求证:平面;
(2)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥A-BPC中,,M为AB的中点,D为PB的中点,且为正三角形.
(1)求证:平面APC;
(2)若,,求三棱锥D-BCM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记数列的前n项和为,其中所有奇数项之和为,所有偶数项之和为
若是等差数列,项数n为偶数,首项,公差,且,求;
若数列的首项,满足,其中实常数,且,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧面底面,四边形是边长为2的菱形,,,,E,F分别为AC,的中点.
(1)求证:直线EF∥平面;
(2)设分别在侧棱,上,且,求平面BPQ分棱柱所成两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面是边长为的菱形,,点E是棱BC的中点,,点P在平面ABCD的射影为O,F为棱PA上一点.
1求证:平面平面BCF;
2若平面PDE,,求四棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com