精英家教网 > 高中数学 > 题目详情
3.已知f(x)是定义在[-2,2]上的奇函数,且f(2)=3.若对任意的m,n∈[-2,2],m+n≠0,都有$\frac{f(m)+f(n)}{m+n}$>0.
(1)判断函数f(x)的单调性,并证明;
(2)若f(2a-1)<f(a2-2a+2),求实数a的取值范围;
(3)若不等式f(x)≥5-2a对任意x∈[-2,2]恒成立,求实数a的取值范围.

分析 (1)利用函数的单调性的定义,判断证明即可.
(2)利用函数的单调性,列出不等式组,求解即可.
(3)利用函数的单调性求出函数的最值,利用不等式转化求解即可.

解答 解:(1)f(x)在定义域[-2,2]上是增函数.证明如下:
设任意x1,x2满足-2≤x1<x2≤2,因为f(x)为奇函数,
由题意得f(x1)-f(x2)=f(x1)+f(-x2)=$\frac{{f({x_1})+f(-{x_2})}}{{{x_1}+(-{x_2})}}({x_1}-{x_2})$<0,
即f(x1)<f(x2),∴f(x)在定义域[-2,2]上是增函数.…(4分)
(2)由(1)知f(2a-1)<f(a2-2a+2)
$?\left\{{\begin{array}{l}{-2≤2a-1≤2}\\{-2≤{a^2}-2a+2≤2}\\{2a-1<{a^2}-2a+2}\end{array}}\right.$$?\left\{{\begin{array}{l}{-\frac{1}{2}≤a≤\frac{3}{2}}\\{0≤a≤2}\\{{a^2}-4a+3>0}\end{array}}\right.$,
解得0≤a<1.∴a的取值范围为[0,1).…(8分)
(3)f(x)在定义域[-2,2]上是增函数,
f(x)是定义在[-2,2]上的奇函数,且f(2)=3.
不等式f(x)≥5-2a对任意x∈[-2,2]恒成立,
可得f(x)min=f(-2)=-3,
∴5-2a≤f(-2)=-3⇒a≥4…(12分)

点评 本题考查函数的单调性的定义的应用,函数恒成立以及函数单调性的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=-$\frac{2x}{1+|x|}$(x∈R),区间M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,则b-a的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个平面将空间分成2部分;两个平面将空间分成3或4部分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于函数f(x)=lnx的定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
上述结论中正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x}(x≤0)}\\{{x^2}(x>0)}\end{array}}$,那么f[f(-1)]的值为(  )
A.$\frac{1}{4}$B.4C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.满足{3}∪A={1,3,5}的集合A可以是{1,5}或{1,3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知首项为$\frac{3}{2}$的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn=Sn+$\frac{1}{S_n}$(n∈N*),求数列{Tn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有以下判断:
①f(x)=$\frac{|x|}{x}$与g(x)=$\left\{{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}}$表示同一函数;
②函数y=f(x)的图象与直线x=1的交点最多有1个;
③f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;
④若f(x)=|x-1|-|x|,则f(f($\frac{1}{2}$))=0.
其中正确判断的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题错误的是(  )
A.命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”
B.“$θ=\frac{π}{6}$”是“$sin(θ+2kπ)=\frac{1}{2}$”的充分不必要条件
C.若p∧q为假命题,则p,q均为假命题
D.对于命题p:?x∈R,使得x2+x+1<0,则?p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

同步练习册答案