精英家教网 > 高中数学 > 题目详情
6.从0,1,2,3,4,5,6中每次取出5个来排列,可以组成多少个1不在百位、2不在个位且没有重复数字的五位数?

分析 由题意分两类,第一类:1在个位的;第二类:1不在个位也不在百位,根据分类加法原理可得.

解答 解:由1不在百位,可分为以下两类
第一类:1在个位的共有A43=24个;
第二类:1不在个位也不在百位的共有A31A31A32=54个.
所以1不在百位且2不在个位的共有24+54=78个.

点评 本题主要考查了分类计数原理,关键是分类,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.f(x)=$\sqrt{x}$lnx在点(4,f(4))处的切线方程为(  )
A.(ln2+1)x-2y+4ln2-4=0B.(ln4+1)x-2y+7ln4-1=0
C.(ln4+1)x-2y+8ln2-4=0D.(ln2+1)x+2y+7ln2-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读右边的程序框图,运行相应的程序,输出k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1、F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$],∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的最小值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A′B′C′D′中,M,N分别是DD′,AD的中点,求异面直线MM与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正项等比数列{an}和正项等差数列{bn}中,已知a1,a2017的等比中项与b1,b2017的等差中项相等,且$\frac{1}{{b}_{1}}$+$\frac{4}{{b}_{2017}}$≤1,当a1009取得最小值时,等差数列{bn}的公差d的取值集合为(  )
A.{d|d≥$\frac{1}{672}$}B.{d|0<d<$\frac{1}{672}$}C.{$\frac{1}{672}$}D.{d|d≥$\frac{3}{2017}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知m∈R,若点M(x,y)为直线l1:my=-x和l2:mx=y+m-3的交点,l1和l2分别过定点A和B,则|MA|•|MB|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.1B.$\frac{3}{5}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步练习册答案