18£®ÒÑÖªÅ×ÎïÏßCµÄ±ê×¼·½³ÌΪy2=2px£¨p£¾0£©£¬MΪÅ×ÎïÏßCÉÏÒ»¶¯µã£¬A£¨a£¬0£©£¨a¡Ù0£©ÎªÆä¶Ô³ÆÖáÉÏÒ»µã£¬Ö±ÏßMAÓëÅ×ÎïÏßCµÄÁíÒ»¸ö½»µãΪN£®µ±AΪÅ×ÎïÏßCµÄ½¹µãÇÒÖ±ÏßMAÓëÆä¶Ô³ÆÖᴹֱʱ£¬¡÷MONµÄÃæ»ýΪ18£®
£¨1£©ÇóÅ×ÎïÏßCµÄ±ê×¼·½³Ì£»
£¨2£©¼Çt=$\frac{1}{{|{AM}|}}+\frac{1}{{|{AN}|}}$£¬ÈôtÖµÓëMµãλÖÃÎ޹أ¬Ôò³Æ´ËʱµÄµãAΪ¡°Îȶ¨µã¡±£¬ÊÔÇó³öËùÓС°Îȶ¨µã¡±£¬ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³öpµÄÖµ¼´¿É£»
£¨2£©Éè³öÖ±ÏßMNµÄ·½³Ì£¬ÁªÁ¢·½³Ì×飬µÃµ½¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬Í¨¹ýÌÖÂÛaµÄ·ûºÅ½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʽâ³ö¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬${S_{¡÷MON}}=\frac{1}{2}•|OA|•|MN|=\frac{1}{2}•\frac{p}{2}•2p=\frac{p^2}{2}=18$£¬
¡àp=6£¬
Å×ÎïÏßCµÄ±ê×¼·½³ÌΪy2=12x£®¡­£¨5·Ö£©
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÉèÖ±ÏßMNµÄ·½³ÌΪx=my+a£¬
ÁªÁ¢$\left\{{\begin{array}{l}{x=my+a\;}\\{{y^2}=12x\;\;}\end{array}}\right.$µÃy2-12my-12a=0£¬
¡÷=144m2+48a£¾0£¬y1+y2=12m£¬y1y2=-12a£¬
ÓɶԳÆÐÔ£¬²»·ÁÉèm£¾0£¬
£¨¢¡£©a£¼0ʱ£¬¡ßy1y2=-12a£¾0£¬¡ày1£¬y2ͬºÅ£¬
ÓÖ$t=\frac{1}{|AM|}+\frac{1}{|AN|}=\frac{1}{{\sqrt{1+{m^2}}|{y_1}|}}+\frac{1}{{\sqrt{1+{m^2}}|{y_2}|}}$£¬
¡à${t^2}=\frac{1}{{1+{m^2}}}•\frac{{{{£¨{y_1}+{y_2}£©}^2}}}{{{{£¨{y_1}{y_2}£©}^2}}}=\frac{1}{{1+{m^2}}}•\frac{{144{m^2}}}{{144{a^2}}}=\frac{1}{a^2}£¨{1-\frac{1}{{1+{m^2}}}}£©$£¬
²»ÂÛaÈ¡ºÎÖµ£¬t¾ùÓëmÓйأ¬¼´a£¼0ʱ£¬A²»ÊÇ¡°Îȶ¨µã¡±£»
£¨¢¢£©a£¾0ʱ£¬¡ßy1y2=-12a£¼0£¬¡ày1£¬y2ÒìºÅ£¬
ÓÖ$t=\frac{1}{|AM|}+\frac{1}{|AN|}=\frac{1}{{\sqrt{1+{m^2}}|{y_1}|}}+\frac{1}{{\sqrt{1+{m^2}}|{y_2}|}}$£¬
¡à${t^2}=\frac{1}{{1+{m^2}}}•\frac{{{{£¨{y_1}-{y_2}£©}^2}}}{{{{£¨{y_1}{y_2}£©}^2}}}$
=$\frac{1}{{1+{m^2}}}•\frac{{{{£¨{y_1}+{y_2}£©}^2}-4{y_1}{y_2}}}{{{{£¨{y_1}{y_2}£©}^2}}}$
=$\frac{1}{{1+{m^2}}}•\frac{{144{m^2}+48a}}{{144{a^2}}}$
=$\frac{1}{a^2}£¨{1+\frac{{\frac{1}{3}a-1}}{{1+{m^2}}}}£©$£¬
¡à½öµ±$\frac{1}{3}a-1=0$£¬¼´a=3ʱ£¬tÓëmÎ޹أ¬
¡àËùÇóµÄ¡°Îȶ¨µã¡±Îª£¨3£¬0£©¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÅ×ÎïÏßµÄÐÔÖÊ£¬¿¼²éж¨Òå¡°Îȶ¨µã¡±ÎÊÌ⣬¿¼²é¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÏòÁ¿$\overrightarrow a$ºÍ$\overrightarrow b$µÄ¼Ð½ÇΪ120¡ã£¬ÇÒ|$\overrightarrow a$|=2£¬|$\overrightarrow b$|=5£¬Ôò£¨2$\overrightarrow a$-$\overrightarrow{b}$£©•$\overrightarrow b$=-35£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®PΪÅ×ÎïÏßy2=4xÉÏÈÎÒâÒ»µã£¬PÔÚyÖáÉϵÄÉäӰΪQ£¬µãM£¨7£¬8£©£¬Ôò|PM|Óë|PQ|³¤¶ÈÖ®ºÍµÄ×îСֵΪ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=4ax-$\frac{a}{x}$-2lnx£®
£¨¢ñ£©µ±a=1ʱ£¬ÇóÇúÏßf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚÆä¶¨ÒåÓòÄÚΪÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©É躯Êýg£¨x£©=$\frac{6e}{x}$£¬ÈôÔÚÇø¼ä[1£¬e]ÉÏÖÁÉÙ´æÔÚÒ»µãx0£¬Ê¹µÃf£¨x0£©£¾g£¨x0£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Å×ÎïÏßy2=xÉÏÒ»µãMµ½½¹µãµÄ¾àÀëΪ1£¬ÔòµãMµÄºá×ø±êÊÇ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+4x£¬0¡Üx£¼4}\\{lo{g}_{2}£¨x+4£©£¬4¡Üx¡Ü12}\end{array}\right.$£¬Èô´æÔÚx1£¬x2¡ÊR£¬µ±0¡Üx1£¼4¡Üx2¡Ü12ʱ£¬f£¨x1£©=f£¨x2£©£¬Ôòx1f£¨x2£©µÄ×î´óÖµÊÇ$\frac{256}{27}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬µãF1£¬F2·Ö±ðÊÇÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬µãAÊÇ϶¥µã£¬Å×ÎïÏßC2£ºy=x2-1ÓëxÖá½»ÓÚµãF1£¬F2£¬ÓëyÖá½»ÓÚµãB£¬ÇÒµãBÊÇÏß¶ÎOAµÄÖе㣬µãNΪÅ×ÎïÏßÉÏC2µÄÒ»¶¯µã£¬¹ýµãN×÷Å×ÎïÏßC2µÄÇÐÏß½»ÍÖÔ²C1ÓÚP£¬QÁ½µã£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÈôµãM£¨0£¬-$\frac{4}{5}$£©£¬Çó¡÷MPQÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Îª¿¼²éijÖÖÒßÃçÔ¤·À¼²²¡µÄЧ¹û£¬½øÐж¯ÎïʵÑ飬µÃµ½Í³¼ÆÊý¾ÝÈç±í£º
δ·¢²¡·¢²¡ºÏ¼Æ
δעÉäÒßÃç20xA
×¢ÉäÒßÃç30yB
ºÏ¼Æ5050100
ÏÖ´ÓËùÓÐÊÔÑ鶯ÎïÖÐÈÎȡһֻ£¬È¡µ½¡°×¢ÉäÒßÃ硱¶¯ÎïµÄ¸ÅÂÊΪ$\frac{2}{5}$£®
£¨1£©Çó2¡Á2ÁÐÁª±íÖеÄÊý¾Ýx£¬y£¬A£¬BµÄÖµ£»
£¨2£©»æÖÆ·¢²¡ÂʵÄÌõÐÎͳ¼ÆÍ¼£¬²¢ÅР¶ÏÒßÃçÊÇ·ñÓÐЧ£¿
£¨3£©Äܹ»Óжà´ó°ÑÎÕÈÏΪÒßÃçÓÐЧ£¿
¸½£ºK2=$\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$
P£¨ K2¡ÜK0£©0.050.010.0050.001
K03.8416.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª·½³Ì$\frac{{x}^{2}}{5-2m}$+$\frac{{y}^{2}}{m+1}$=1±íʾÍÖÔ²£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸