精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax2x+bex(a≠0),g(x)=x.(e为自然对数的底数)
(I)若a=b=1,求F(x)=f(x)-g(x)的单调递增区间;
(Ⅱ)当a>0时,设f(x)的图象C1与y=g(x)的图象C1相交于两个不同的点P、Q,过线段PQ的中点作x轴的垂线交C1于点M(x0,y0),求证:f(x0)<1.

分析 (Ⅰ)把a=b=1代入函数解析式,求出函数导函数,由导函数大于等于0求得F(x)=f(x)-g(x)的单调递增区间;
(Ⅱ)设P(x1,y1),Q(x2,y2),不妨设x1<x2,则$\frac{{{x_2}+{x_1}}}{2}={x_0}$,把P、Q坐标代入f(x)=g(x),作差变形得到$\frac{{{x_2}-{x_1}}}{{{e^{x_2}}-{e^{x_1}}}}≥2a{e^{\frac{{{x_2}+{x_1}}}{2}}}+b$,可得$\frac{{{x_2}-{x_1}}}{{{e^{x_2}}-{e^{x_1}}}}•{e^{\frac{{{x_2}+{x_1}}}{2}}}≥2a{e^{{x_2}+{x_1}}}+b{e^{\frac{{{x_2}+{x_1}}}{2}}}=f'({x_0})$,结合$\frac{{{x_2}-{x_1}}}{{{e^{x_2}}-{e^{x_1}}}}•{e^{\frac{{{x_2}+{x_1}}}{2}}}=\frac{{{x_2}-{x_1}}}{{{e^{{x_2}-}}^{x_1}-1}}•{e^{\frac{{{x_2}-{x_1}}}{2}}}$,令t=x2-x1>0换元,构造函数$G(t)={e^{\frac{t}{2}}}-{e^{-\frac{t}{2}}}-t$,利用导数研究其单调性,由其单调性可得$\frac{t}{{{e^t}-1}}{e^{\frac{t}{2}}}<1$.

解答 (Ⅰ)解:当a=b=1时,
F(x)=f(x)-g(x)=e2x+ex-x,则F'(x)=2e2x+ex-1,
由F'(x)=(2ex-1)(ex+1)≥0,得$x≥ln\frac{1}{2}$.
故函数y=F(x)的单调递增区间为$[ln\frac{1}{2},+∞)$;
(Ⅱ)证明:设P(x1,y1),Q(x2,y2),不妨设x1<x2,则$\frac{{{x_2}+{x_1}}}{2}={x_0}$,
∴$a{e^{2{x_2}}}+b{e^{x_2}}={x_2}$,$a{e^{2{x_1}}}+b{e^{x_1}}={x_1}$,
两式相减得:$a({e^{2{x_2}}}-{e^{2{x_1}}})+b({e^{x_2}}-{e^{x_1}})={x_2}-{x_1}$,
整理得${x_2}-{x_1}=a({e^{x_2}}-{e^{x_1}})({e^{x_2}}+{e^{x_1}})+b({e^{x_2}}-{e^{x_1}})≥a({e^{x_2}}-{e^{x_1}})•2{e^{\frac{{{x_2}+{x_1}}}{2}}}+b({e^{x_2}}-{e^{x_1}})$,
则$\frac{{{x_2}-{x_1}}}{{{e^{x_2}}-{e^{x_1}}}}≥2a{e^{\frac{{{x_2}+{x_1}}}{2}}}+b$,
于是$\frac{{{x_2}-{x_1}}}{{{e^{x_2}}-{e^{x_1}}}}•{e^{\frac{{{x_2}+{x_1}}}{2}}}≥2a{e^{{x_2}+{x_1}}}+b{e^{\frac{{{x_2}+{x_1}}}{2}}}=f'({x_0})$,
而$\frac{{{x_2}-{x_1}}}{{{e^{x_2}}-{e^{x_1}}}}•{e^{\frac{{{x_2}+{x_1}}}{2}}}=\frac{{{x_2}-{x_1}}}{{{e^{{x_2}-}}^{x_1}-1}}•{e^{\frac{{{x_2}-{x_1}}}{2}}}$,
令t=x2-x1>0,则设$G(t)={e^{\frac{t}{2}}}-{e^{-\frac{t}{2}}}-t$,
则$G'(t)=\frac{1}{2}{e^{\frac{t}{2}}}+\frac{1}{2}{e^{-\frac{t}{2}}}-1>\frac{1}{2}•2•\sqrt{{e^{\frac{t}{2}}}•{e^{-\frac{t}{2}}}}-1=0$,
∴y=G(t)在(0,+∞)上单调递增,则$G(t)={e^{\frac{t}{2}}}-{e^{-\frac{t}{2}}}-t>G(0)=0$,
于是有${e^{\frac{t}{2}}}-{e^{-\frac{t}{2}}}>t$,即${e^t}-1>t{e^{\frac{t}{2}}}$,且et-1>0,
∴$\frac{t}{{{e^t}-1}}{e^{\frac{t}{2}}}<1$,即f'(x0)<1.

点评 本题考查利用导数研究函数的单调性,考查数学转化思想方法,考查逻辑思维能力和推理运算能力,属压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知f(x)=sinωx+cosωx(ω>0),若$y=f({x+θ})({0<θ<\frac{π}{2}})$是周期为π的偶函数,则θ的值是(  )
A.$\frac{π}{8}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题p:关于x的方程x2+2ax+a+2=0有解,命题q:“?x∈[1,2],x2-a≥0”.若命题“p且q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}满足an=-2n+3,那么a5的值为(  )
A.-7B.-8C.-9D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式|x2-2|<1的解集为(  )
A.$(-\sqrt{3},1)∪(\sqrt{3},+∞)$B.$(-∞,-1)∪(\sqrt{3},+∞)$C.$(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$D.$(-\sqrt{3},-1)∪(1,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前n项和为Sn,S10=55,且a2、a4、a8成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=$\frac{{S}_{n}}{n}$(n∈N*),求b1+b5+b9+…+b4n-3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我们把满足an+an-1=k(n≥2,k是常数)的数列叫做等和数列,常数k叫做数列的公和.若等和数列{an}的首项为1,公和为3,则该数列的前2014项的和为S2014=3021..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(Ⅰ)若曲线y=f(x)在点P(x0,f(x0))处与直线y=b相切,求b的值;
(Ⅱ)若任意x∈[$\frac{1}{e}$,e]均使不等式2f(x)≥-x2+ax-3成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案