精英家教网 > 高中数学 > 题目详情
设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为(  )
A.B.C.D.

试题分析:由可得
则当时,有,即上单调递减.所以.即不等式等价为
因为上单调递减所以由,即,解得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

对于三次函数
定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;
定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称。
己知,请回答下列问题:
(1)求函数的“拐点”的坐标
(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是(不要过程)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)若x=3是的极值点,求[1,a]上的最小值和最大值;
(2)若时是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,为自然对数的底数.
(I)求函数的极值;
(2)若方程有两个不同的实数根,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与直线垂直的抛物线的切线方程是( ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)= (a∈R).
(1)求f(x)的极值;
(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若关于的方程有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)当时,若存在, 使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案