精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱 的中点.

1证明 平面

2 求点到平面的距离.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)连接,设的交点为,则的中点,连接,又的中点,由三角形中位线定理可得,从而根据线面平行的判定定理可得平面;(2)设点到平面的距离为,因为的中点在平面上,故到平面的距离也为,三棱锥的体积 的面积,由得结果.

试题解析:(1)连接,设的交点为,则的中点,连接,又的中点,所以.又平面 平面,所以平面.

(2)由 的中点,所以

在直三棱柱中, ,所以

,所以 ,所以.

设点到平面的距离为,因为的中点在平面上,

到平面的距离也为,三棱锥的体积

的面积,则,得

故点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】空间中有不共面的个点.求证:存在无穷个平面,恰好通过其中的两个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的取值范围是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥各棱所在的6条直线上,互相垂直的最多有儿对?(每两条组成一对)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,设

(Ⅰ)求函数的周期及单调增区间。

(Ⅱ)设的内角的对边分别为,已知 ,求边的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市为拟定出台房产限购的年龄政策为了解人们对房产限购年龄政策的态度,对年龄在岁的人群中随机调查100人,调查数据的频率分布直方图和支持房产限购的人数与年龄的统计结果如下:

年龄

支持的人数

15

5

15

28

17

1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过的前提下认为以44岁为分界点的不同人群对房产限购年龄政策的支持度有差异;

44岁以下

44岁及44岁以上

总计

支持

不支持

总计

2)若以44岁为分界点,从不支持房产限购的人中按分层抽样的方法抽取8人参加政策听证会.现从这8人中随机抽2人.

①抽到1人是44岁以下时,求抽到的另一人是44岁以上的概率.

②记抽到44岁以上的人数为X,求随机变量X的分布列及数学期望.

参考数据:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了个轮胎,将每个轮胎的宽度(单位: )记录下来并绘制出如下的折线图:

(1)分别计算甲、乙两厂提供的个轮胎宽度的平均值;

(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.

(i)若从甲乙提供的个轮胎中随机选取个,求所选的轮胎是标准轮胎的概率

(ii)试比较甲、乙两厂分别提供的个轮胎中所有标准轮胎宽度的方差大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

男生

5

女生

10

已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6

1)请将上面的列联表补充完整;

2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由;

3)在上述喜好体育运动的6人中随机抽取两人,求恰好抽到一男一女的概率.

参考公式:

独立性检验临界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,底面,点的中点,,交于点

(1)求证:平面平面

(2)求三棱锥的体积

查看答案和解析>>

同步练习册答案