精英家教网 > 高中数学 > 题目详情
14.如果(x2-1)+(x-1)i是纯虚数,那么实数x=-1.

分析 直接由实部为0且虚部不为0列式求解.

解答 解:∵(x2-1)+(x-1)i是纯虚数,
∴$\left\{\begin{array}{l}{{x}^{2}-1=0}\\{x-1≠0}\end{array}\right.$,解得:x=-1.
故答案为:-1.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85mm,现分别从他们生产的零件中各随机抽取8件检测,其尺寸用茎叶图表示如图(单位:mm),则估计(  )
A.甲、乙生产的零件尺寸的中位数相等
B.甲、乙生产的零件质量相当
C.甲生产的零件质量比乙生产的零件质量好
D.乙生产的零件质量比甲生产的零件质量好

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在${({x^2}+\frac{2}{x^3})^5}$的展开式中,常数项为40.(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2lnx+$\frac{1}{x}$-mx(m∈R).
(Ⅰ)当m=-1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在(0,+∞)上为单调递减,求m的取值范围;
(Ⅲ)设0<a<b,求证:$\frac{lnb-lna}{b-a}<\frac{1}{{\sqrt{ab}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是等差数列,前n项和为Sn,若a1=9,S3=21.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a5,a8,Sk成等比数列,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知{an}为等差数列,Sn为其前n项和.若a2=2,S9=9,则a8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{\begin{array}{l}(x-2a)(a-x),x≤1\\ \sqrt{x}+a-1,x>1.\end{array}\right.$
(1)若a=0,x∈[0,4],则f(x)的值域是[-1,1];
(2)若f(x)恰有三个零点,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点$P(1,\frac{3}{2})$,直线l:y=kx+m交椭圆E于不同的两点A,B,设线段AB的中点为M.
(1)求椭圆E的方程;
(2)当△AOB的面积为$\frac{3}{2}$(其中O为坐标原点)且4k2-4m2+3≠0时,试问:在坐标平面上是否存在两个定点C,D,使得当直线l运动时,|MC|+|MD|为定值?若存在,求出点C,D的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案