精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\left\{\begin{array}{l}(x-2a)(a-x),x≤1\\ \sqrt{x}+a-1,x>1.\end{array}\right.$
(1)若a=0,x∈[0,4],则f(x)的值域是[-1,1];
(2)若f(x)恰有三个零点,则实数a的取值范围是(-∞,0).

分析 (1)求出f(x)在[-4,4]上的单调性,利用单调性求出最值即可得出值域;
(2)对x讨论,分别求出f(x)的零点,令其零点分别在对应的定义域上即可.

解答 解:(1)a=0时,f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤1}\\{\sqrt{x}-1,x>1}\end{array}\right.$,
∴f(x)在[0,1]上单调递减,在(1,4]上单调递增,
∵f(0)=0,f(1)=-1,f(4)=1,
∴f(x)在[0,1]上的值域是[-1,0],在(1,4]上的值域是(0,1],
∴f(x)在[0,4]上的值域是[-1,1].
(2)当x≤1时,令f(x)=0得x=2a或x=a,
当x>1时,令f(x)=0得$\sqrt{x}$=1-a,∴x=(1-a)2(1-a>1),
∵f(x)恰好有三个解,
∴$\left\{\begin{array}{l}{2a≤1}\\{a≤1}\\{2a≠a}\\{(1-a)^{2}>1}\\{1-a>1}\end{array}\right.$,解得a<0.
故答案为:[-1,1];(-∞,0).

点评 本题考查了基本初等函数的单调性,函数零点的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.从1,2,3,4,5,6,7这七个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是$\frac{19}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如果(x2-1)+(x-1)i是纯虚数,那么实数x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=Asin(ωx)(ω>0)的图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若$g(x)=f(x)•cos(2x+\frac{π}{6})$,求g(x)在$[0,\frac{π}{2}]$上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果$a={2^{1.2}},b={(\frac{1}{2})^{0.3}},c=2{log_2}\sqrt{3}$,那么(  )
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t-2}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρcosθ+3=0,设点P是曲线C上的一个动点,则P到直线l距离的取值范围是[2$\sqrt{3}$-1,2$\sqrt{3}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+$\frac{π}{6}$),(A>0,ω>0)的最小正周期为T=6π,且f(2π)=2.
(Ⅰ)求f(x)的表达式;
(Ⅱ)若g(x)=f(x)+2,求g(x)的单调区间及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数f(x)的单调区间和最大值;
(Ⅱ)设g(x)=xf(x)+2x,试问:过点(2,5)可作多少条直线与曲线y=g(x)相切?并证明你的结论;
(Ⅲ)若两不等的正数m,n满足mn=nm,函数f(x)的导数为f′(x),证明:f′($\frac{m+n}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.经过点M(4,1)作直线l交双曲线${x^2}-\frac{y^2}{2}=1$于A、B两点,且M是AB的中点,则直线l的方程为y=8x-31.

查看答案和解析>>

同步练习册答案