精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax2(a∈R).
(Ⅰ)若f′(1)=3,
(i)求曲线y=f(x)在点(1,f(1))处的切线方程,
(ii)求f(x)在区间[0,2]上的最大值;
(Ⅱ)若当x∈[0,2]时,f(x)+x≥0恒成立,求实数a的取值范围.
分析:(Ⅰ)求函数的导数,利用导数的几何意义求切线方程,以及求函数的最值.
(Ⅱ)将不等式进行转化,将恒成立问题转化为求函数的大小问题.
解答:解:(Ⅰ)(i)∵f(x)=x3-ax2(a∈R),∴f'(x)=3x2-2ax,
由f'(1)=3-2a=3,解得a=0,
∴y=f(x)=x3
∵f(1)=1,f'(x)=3x2,f'(1)=3,
∴切点(1,1),斜率为3,
∴y=f(x)在点(1,f(1))处的切线方程为y=3x-2.
(ii)∵f(x)=x3,f'(x)=3x2≥0,
∴f(x)在[0,2]单调递增,
∴f(x)最大值为f(2)=8.
(Ⅱ)∵x3-ax2+x≥0对x∈[0,2]恒成立,
∴ax2≤x3+x.
当x=0时成立.
当x∈(0,2]时a≤x+
1
x

∵x+
1
x
≥2,在x=1处取最小值.
∴a≤2.
点评:本题主要考查利用导数研究函数的性质,考查导数的基本运算和应用,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案