精英家教网 > 高中数学 > 题目详情
1.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的右焦点到它的渐进线的距离为(  )
A.12B.4C.2$\sqrt{3}$D.2

分析 求得双曲线的a,b,c,可得右焦点和渐近线方程,运用点到直线的距离公式,计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的a=2,b=2$\sqrt{3}$,c=$\sqrt{{a}^{2}+{b}^{2}}$=4,
即有右焦点为(4,0),渐近线方程为y=±$\sqrt{3}$x,
可得右焦点到它的渐近线的距离为d=$\frac{4\sqrt{3}}{\sqrt{3+1}}$=2$\sqrt{3}$.
故选:C.

点评 本题考查双曲线的焦点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且a1=1,an+1=3Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n•an,求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y+2≥0}\\{4x-y-10≤0}\end{array}\right.$,z=kx+y(k∈R)仅在(4,6)处取得最大值,则k的取值范围是(  )
A.k>1B.k>-1C.k<-$\frac{1}{2}$D.k<-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断方程$\frac{x}{4}$-cosx=0的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R,若函数f(x)的图象与x轴存在交点,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:y=x+n与椭圆G:(3-m)x2+my2=m(3-m)交于两点B,C.
(Ⅰ)若椭圆G的焦点在y轴上,求m的取值范围;
(Ⅱ)若A(0,1)在椭圆上,且以BC为直径的圆过点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(为参数)的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A(1,2)示抛物线y2=4x上一点,过点A作两条直线AD,AE分别交抛物线于点D,E,若AD,AE的斜率分别为kAD,KAE,且kAD+kAE=0,则直线DE的斜率为(  )
A.1B.-$\frac{1}{2}$C.-1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线y=kx+1与圆C:x2+y2=1交于P、Q两点,以OP、OQ为邻边作平行四边形OPMQ,且点M恰在圆C上,则k=±$\sqrt{3}$.

查看答案和解析>>

同步练习册答案