【题目】已知函数(为常数).
(1)讨论函数的单调区间;
(2)当时,设的两个极值点,()恰为的零点,求的最小值.
【答案】(1)当时,的单调递增区间为,单调递减区间为;
当时,的单调递增区间为.(2)
【解析】
试题分析:(1)首先求函数的导数 ,分 三种情况解 或 的解集,得到函数的单调区间;(2)首先求 ,得到 ,根据 ,得到 ,代入 并化简为,根据前面根与系数的关系和的取值范围,得到的取值范围,通过设转化为关于的函数求最小值.
试题解析:(1),,
当时,由,解得,即当时,,单调递增;由解得,即当时,,单调递减;
当时,,即在上单调递增;
当时,,故,即在上单调递增.
所以当时,的单调递增区间为,单调递减区间为;
当时,的单调递增区间为.
(2)由得,
由已知有两个互异实根,,
由根与系数的关系得,,
因为,()是的两个零点,故 ①
②
由②①得:,
解得,
因为,得,
将代入得
,
所以,
设,因为,
所以,所以,
所以,所以.
构造,得,
则在上是增函数,
所以,即的最小值为.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆于, 两点,线段的中点为,直线交椭圆于, 两点.
(I)求椭圆的方程.
(II)求证:点在直线上.
(III)是否存在实数,使得的面积是面积的倍?若存在,求出的值.若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程.
已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为:
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为D,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,则称函数f(x)为“Ω函数”.给出下列四个函数:
①y=sinx;
②y=2x;
③y= ;
④f(x)=lnx,
则其中“Ω函数”共有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2≤x<7},B={x|3<x≤10},C={x|a﹣5<x<a}.
(1)求A∩B,A∪B;
(2)若非空集合C(A∪B),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求区间A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c和一次函数g(x)=﹣bx,其中a,b,c∈R且满足a>b>c,f(1)=0.
(1)证明:函数f(x)与g(x)的图象交于不同的两点;
(2)若函数F(x)=f(x)﹣g(x)在[2,3]上的最小值为9,最大值为21,试求a,b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com