精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆 两点,线段的中点为,直线交椭圆 两点.

I)求椭圆的方程.

II)求证:点在直线上.

III)是否存在实数,使得的面积是面积的倍?若存在,求出的值.若不存在,说明理由.

【答案】12)见解析(3

【解析】试题分析:本题主要考查椭圆的标准方程、直线与椭圆的相交问题、韦达定理、中点坐标公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用已知的离心率和左焦点坐标,得到基本量a,b,c的值,从而得到椭圆的标准方程;第二问,设出点ABM的坐标和直线的方程,令直线的方程与椭圆的方程联立,利用所得方程,根据韦达定理得到,从而得到的坐标, 由直线方程获得,验证是否在上即可;第三问,数形结合,根据已知条件将题目转化为C点坐标M点坐标的关系,通过直线与椭圆联立消参,得到的坐标,令,解出k的值,k有解,即存在.

试题解析:(1)由题意可知,于是.

所以,椭圆的标准方程为. 3

2)设

.

所以,

于是.

因为,所以在直线. 8

3)由(2)知点A到直线CD的距离与点B到直线CD的距离相等,

BDM的面积是ACM面积的3倍,

|DM|=3|CM|,因为|OD|=|OC|,于是MOC中点,;

设点C的坐标为,则.因为,解得.

于是,解得,所以. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下三个命题 ①设回归方程为 =3﹣3x,则变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N (1,σ2) (σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在棱长均为2的正四棱锥P﹣ABCD中,点E为PC中点,则下列命题正确的是(

A.BE平行面PAD,且直线BE到面PAD距离为
B.BE平行面PAD,且直线BE到面PAD距离为
C.BE不平行面PAD,且BE与平面PAD所成角大于
D.BE不平行面PAD,且BE与面PAD所成角小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①函数y=|x|与函数y=( 2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;
④y=2|x|的最小值为1
⑤对于函数f(x),若f(﹣1)f(3)<0,则方程f(x)=0在区间[﹣1,3]上有一实根;
其中正确命题的序号是(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)的奇偶性,并证明;
(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有车牌尾号为的汽车和尾号为的汽车,两车分属于两个独立业务部分.对一段时间内两辆汽车的用车记录进行统计,在非限行日, 车日出车频率 车日出车频率.该地区汽车限行规定如下:

车尾号

限行日

星期一

星期二

星期三

星期四

星期五

现将汽车日出车频率理解为日出车概率,且 两车出车相互独立.

I)求该单位在星期一恰好出车一台的概率.

II)设表示该单位在星期一与星期二两天的出车台数之和,求的分布列及其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

(1)讨论函数的单调区间;

(2)当时,设的两个极值点)恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (a,b是常数,a>0且a≠1)在区间 上有最大值3,最小值为 .试求a,b的值.

查看答案和解析>>

同步练习册答案