精英家教网 > 高中数学 > 题目详情

【题目】如图在棱长均为2的正四棱锥P﹣ABCD中,点E为PC中点,则下列命题正确的是(

A.BE平行面PAD,且直线BE到面PAD距离为
B.BE平行面PAD,且直线BE到面PAD距离为
C.BE不平行面PAD,且BE与平面PAD所成角大于
D.BE不平行面PAD,且BE与面PAD所成角小于

【答案】D
【解析】解:连接AC,BD,交点为O,以O为坐标原点,OC,OD,OP方向分别x,y,z轴正方向建立空间坐标系,
由正四棱锥P﹣ABCD的棱长均为2,点E为PC的中点,
则O(0,0,0),A(﹣ ,0,0),B(0,﹣ ,0),
C( ,0,0),D(0, ,0),
P(0,0, ),E( ,0, ),
=( ), =(﹣ ,0,﹣ ),
=(0, ,﹣ ),
=(x,y,z)是平面PAD的一个法向量,

取x=1,得 =(1,﹣1,﹣1),
设BE与平面PAD所成的角为θ,
则sinθ=|cos< >|=| |=
故BE与平面PAD不平行,且BE与平面PAD所成的角小于30°.
由此排除选项A,B,C.
故选:D.

【考点精析】认真审题,首先需要了解空间中直线与平面之间的位置关系(直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】张老师开车上班,有路线①与路线②两条路线可供选择. 路线①:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间2分钟;若处遇红灯或黄灯,则导致延误时间3分钟;若两处都遇绿灯,则全程所花时间为20分钟.

路线②:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间8分钟;若处遇红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所花时间为15分钟.

(1)若张老师选择路线①,求他20分钟能到校的概率;

(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(
A. 与y=x+1
B.y=x与 (a>0且a≠1)
C. 与y=x﹣1
D.y=lgx与

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列算法语句,将输出的A值依次记为a1 , a2 , …,an , …,a2015;已知函数f(x)=a2sin(ωx+φ)(ω>0,|φ|< )的最小正周期是a1 , 且函数y=f(x)的图象关于直线x= 对称.
(Ⅰ)求函数y=f(x)表达式;
(Ⅱ)已知△ABC中三边a,b,c对应角A,B,C,a=4,b=4 ,∠A=30°,求f(B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x) (xR)

(1)求函数f(x)的最小值;

(2)已知mR,命题p:关于x的不等式f(x)m22m2对任意xR恒成立;q:函数y(m21)x是增函数.若“pq”为真,“pq”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数),

(1)求曲线在点处的切线方程;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,过左焦点且斜率为的直线交椭圆 两点,线段的中点为,直线交椭圆 两点.

I)求椭圆的方程.

II)求证:点在直线上.

III)是否存在实数,使得的面积是面积的倍?若存在,求出的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

I,求函数的单调区间.

II若函数在区间上是减函数,求实数的取值范围.

III过坐标原点作曲线的切线,求切线的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求区间A.

查看答案和解析>>

同步练习册答案