精英家教网 > 高中数学 > 题目详情

【题目】根据下列算法语句,将输出的A值依次记为a1 , a2 , …,an , …,a2015;已知函数f(x)=a2sin(ωx+φ)(ω>0,|φ|< )的最小正周期是a1 , 且函数y=f(x)的图象关于直线x= 对称.
(Ⅰ)求函数y=f(x)表达式;
(Ⅱ)已知△ABC中三边a,b,c对应角A,B,C,a=4,b=4 ,∠A=30°,求f(B).

【答案】解:(Ⅰ)由已知,当n≥2时,an=1+3+5+…+(2n﹣1)=n2而a1=1也符合an=n2 , 知a1=1,a2=4,所以函数y=f(x)的最小正周期为1,所以ω=2π,
则f(x)=4sin(2πx+φ),
又函数y=f(x)的图象关于直线x= 对称
所以 +φ=kπ+ (k∈Z),因为|φ|< ,所以φ= ,则f(x)=4sin(2πx+
(Ⅱ)由正弦定理计算 ,∴sinB= ,∴B为
可得f(B)=4sin( + )或4sin( +
【解析】(Ⅰ)由已知算法语句可知所求为2015个奇数的和;根据a1=1,a2=4,得到函数的周期,由对称轴x= ,结合|φ|< 得到φ,从而求出三角函数解析式;(Ⅱ)由正弦定理计算B,即可求f(B).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(﹣1, )上单调递减的函数为(
A.y=x2
B.y=3x1
C.y=log2(x+1)
D.y=﹣sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2,AD= ,∠DAB= ,PD⊥AD,PD⊥DC.
(Ⅰ)证明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D为 ,求AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i128)数据作了初步处理得到右面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为.根据(2)的结果回答下列问题:

①年宣传费=49时,年销售量及年利润的预报值是多少?

②年宣传费为何值时,年利润的预报值最大?

附:对于一组数据 其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列{an}的前n项和为Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=|2n﹣5|an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在棱长均为2的正四棱锥P﹣ABCD中,点E为PC中点,则下列命题正确的是(

A.BE平行面PAD,且直线BE到面PAD距离为
B.BE平行面PAD,且直线BE到面PAD距离为
C.BE不平行面PAD,且BE与平面PAD所成角大于
D.BE不平行面PAD,且BE与面PAD所成角小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)的奇偶性,并证明;
(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)若从第345组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第345组各抽取多少名志愿者?

2)在(1)的条件下,该市决定在第34组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步练习册答案