精英家教网 > 高中数学 > 题目详情
3.正四棱锥P-ABCD的五个顶点在同一球面上,若该正四棱锥的底面边长为4,侧棱长2$\sqrt{6}$,则这个球的半径为3.

分析 画出图形,正四棱锥P-ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径.

解答 解:正四棱锥P-ABCD的外接球的球心在它的高PO1上,
记为O,PO=AO=R,PO1=4,OO1=R-4,或OO1=4-R(此时O在PO1的延长线上),
在Rt△AO1O中,R2=8+(R-4)2得R=3,
故答案为:3、

点评 本题考查球的表面积,球的内接体问题,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=lnx+\frac{a}{{2{x^2}}}(a>0)$.
(1)试判断f(x)在定义域内的单调性;
(2)若f(x)在区间[1,e2]上的最小值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱与最短的棱所成角的余弦值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F是抛物线y2=4x的焦点,过F作一直线l交抛物线于A,B两点,若$\overrightarrow{FB}$=3$\overrightarrow{AF}$,则直线l与坐标轴围成的三角形的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线x2=4y,过焦点F的直线l交抛物线于A,B两点(点A在第一象限),若直线l的倾斜角为30°,则$\frac{|AF|}{|BF|}$等于(  )
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=eax,g(x)=-x2+bx+c(a,b,c∈R),且曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线.设h(x)=f(x)-g(x).
(Ⅰ)求c的值,及a,b的关系式;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)设a≥0,若对于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.随机变量X的分布列为
X-10123
P0.16$\frac{a}{10}$a2$\frac{a}{5}$0.3
(Ⅰ)求a的值;
(Ⅱ)求E(X);
(Ⅲ)若Y=2X-3,求E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“a=$\frac{1}{2}$”是“直线l1:(a+2)x+(a-2)y=1与直线l2:(a-2)x+(3a-4)y=2相互垂直”的充分不必要条件.(填充分必要、充分不必要、必要不充分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于A,B两点,一条垂直于x轴的直线分别与线段AB和直线l:y=-c交于点P,Q.
(1)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,求c的值;
(2)若c=1,P为线段AB的中点,求证:直线QA与该抛物线有且仅有一个公共点.
(3)若c=1,直线QA的斜率存在,且与该抛物线有且仅有一个公共点,试问P是否一定为线段AB的中点?说明理由.

查看答案和解析>>

同步练习册答案