ÒÑÖªÊýÁÐ{an}  ºÍ {bn}ÖУ¬a1=t£¨t£¾0£©£¬a2=t2£®µ±x=
t
ʱ£¬º¯Êýf£¨x£©=
1
3
(an-1-an)x3
-£¨an-an+1£©x£¨n¡Ý2£©È¡µÃ¼«Öµ£®
£¨1£©ÇóÊýÁÐ{an} µÄͨÏʽ£®
£¨2£©ÈôµãPn£¨1£¬bn£©£®¹ýº¯Êýg£¨x£©=ln£¨1+x2£©Í¼ÏóÉϵĵ㣨an£¬g£¨an£©£©µÄÇÐÏßʼÖÕÓëOPnƽÐУ¨OÊÇ×ø±êÔ­µã£©£®ÇóÖ¤£ºµ±
1
2
£¼t£¼2ʱ£¬²»µÈʽ
1
b1
+
1
b2
+¡­+
1
bn
£¼2n-2
-n
2
¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£®
·ÖÎö£º£¨1£©ÀûÓú¯Êý¼«ÖµµÄ¶¨Ò壬̽ÇóÊýÁÐ{an} ÏàÁÚÁ½ÏîÖ®¼äµÄ¹ØÏµ£¬½øÐбäÐΣ¬ÕûÀí£¬È·¶¨³öÏà¹ØÊýÁÐÎªÌØÊâÊýÁУ¬´Ó¶ø´ïµ½Çó½âµÄÄ¿µÄ£»
£¨2£©ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒ壬Çó³öbn£¬ÀûÓ÷ÅËõ·¨½«
1
b1
+
1
b2
+¡­+
1
bn
ת»¯£¬Ê¹Ö®½øÒ»²½×÷ΪÇÅÁº¹µÍ¨Óë2n-2
-n
2
µÄÁªÏµ£®
½â´ð£º½â£º£¨1£©f¡ä£¨x£©=£¨an-1-an£©x2-£¨an-an+1£©
µ±x=
t
ʱ£¬º¯Êýf£¨x£©È¡µÃ¼«Öµ£¬Ôòf¡ä£¨
t
£©=0£¬
´úÈëÕûÀíµÃ£¬an+1-an=t£¨an-an-1£©  £¨n¡Ý2£©
ÓÖt£¾0£¬¡àÊýÁÐ{an+1-an}ÊÇÊ×ÏîΪ a2-a1=t2-t£¬¹«±ÈΪtµÄµÈ±ÈÊýÁУ®
¡àan+1-an=£¨t2-t£©•tn-1=tn+1-tn
µ±n¡Ý2ʱ£¬an=£¨an-an-1£©+£¨an-1-an-2£©+¡­+£¨a2-a1£©+a1
=£¨tn-tn-1£©+£¨tn-1-tn-2£©+¡­+£¨t2-t1£©+t=tn
µ±t=1ʱ·ûºÏ£¬¡àÊýÁÐ{an} µÄͨÏʽan=tn£®
£¨2£©g¡ä£¨x£©=[ln£¨1+x2£©]¡ä=
2x
1+x2

¹ýº¯Êýg£¨x£©Í¼ÏóÉϵĵ㣨an£¬g£¨an£©£©µÄÇÐÏßµÄбÂÊk1=g¡ä£¨an£©=
2an
1+an2
=bn£®
¡à
1
bn
=
1
2
(tn+
1
tn
)

ÒòΪ
1
2
£¼t£¼2£¬ËùÒÔ£¨2t£©n£¾1£¬tn£¼2n£®
Ôò£¨2n+2-n£©-£¨tn+t-n£©=
1
(2t)n
£¨2n-tn£©[£¨2t£©n-1]£¾0£¬
ÓÐ
1
bn
£¼
1
2
£¨2n+2-n£©£¬
¹Ê
1
b1
+
1
b2
+¡­+
1
bn
£¼
1
2
[£¨2+
1
2
£©+£¨22+
1
22
£©+¡­+£¨2n+
1
2n
£©]=2n-
1
2
£¨1+
1
2n
£©£¬
¡ß1+
1
2n
£¾2
1
2n

¡à
1
b1
+
1
b2
+¡­+
1
bn
£¼2n-
1
2n
=2n-2-
n
2
¼´Ö¤£®
µãÆÀ£º±¾ÌâÊǺ¯Êý¡¢ÊýÁУ¬²»µÈʽµÄ×ۺϣ®±¾ÌâÖ÷ÒªÔËÓÃÁ˺¯ÊýµÄ¼«Öµ£¬¾ùÖµ²»µÈʽ£¬µÈ±ÈÊýÁеÄͨÏʽ£¬Àۺͷ¨ÊýÁÐÇóºÍ£®ÊÇ»ù´¡ÖªÊ¶¡¢»ù±¾·½·¨µÄ×ۺϿ¼²é£®ÒªÇó¾ßÓÐÒ»¶¨µÄ·ÖÎö½â¾öÎÊÌ⣬¼ÆË㣬»¯¼òµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a=1£¬a1=2£¬a2£¾0£¬bn=
a1an+1
(n¡ÊN*)
£®ÇÒ{bn}ÊÇÒÔ
aΪ¹«±ÈµÄµÈ±ÈÊýÁУ®
£¨¢ñ£©Ö¤Ã÷£ºaa+2=a1a2£»
£¨¢ò£©Èôa3n-1+2a2£¬Ö¤Ã÷ÊýÀý{cx}ÊǵȱÈÊýÀý£»
£¨¢ó£©ÇóºÍ£º
1
a1
+
1
a2
+
1
a3
+
1
a4
+
¡­+
1
a2n-1
+
1
a2n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=m£¬an+1=¦Ëan+n£¬bn=an-
2n
3
+
4
9
£®
£¨1£©µ±m=1ʱ£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâµÄʵÊý¦Ë£¬{an}Ò»¶¨²»ÊǵȲîÊýÁУ»
£¨2£©µ±¦Ë=-
1
2
ʱ£¬ÊÔÅжÏ{bn}ÊÇ·ñΪµÈ±ÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍµÈ±ÈÊýÁÐ{bn}Âú×㣺a1=b1=4£¬a2=b2=2£¬a3=1£¬ÇÒÊýÁÐ{an+1-an}ÊǵȲîÊýÁУ¬n¡ÊN*£¬
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÎÊÊÇ·ñ´æÔÚk¡ÊN*£¬Ê¹µÃak-bk¡Ê(
12
£¬3]
£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a1=¦Ë£¬an+1=
23
an+n-4£¬bn=£¨-1£©n£¨an-3n+21£©ÆäÖЦËΪʵÊý£¬ÇҦˡÙ-18£¬nΪÕýÕûÊý£®
£¨¢ñ£©ÇóÖ¤£º{bn}ÊǵȱÈÊýÁУ»
£¨¢ò£©Éè0£¼a£¼b£¬SnΪÊýÁÐ{bn}µÄǰnÏîºÍ£®ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐa£¼Sn£¼b£¿Èô´æÔÚ£¬Çó¦ËµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•Т¸ÐÄ£Ä⣩ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=1ÇÒbn=1-2an£¬bn+1=
bn
1-4 
a
2
n
£®
£¨I£©Ö¤Ã÷£ºÊýÁÐ{
1
an
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Çóʹ²»µÈʽ(1+a1)(1+a2)¡­(1+an)¡Ýk
1
b2b3¡­bnbn+1 
¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢µÄ×î´óʵÊýk£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸