精英家教网 > 高中数学 > 题目详情
在△ABC中,若tanA=2tanB=3tanC,则cosA的值为
 
分析:用tanA表示tanB、tanC,根据三角形的内角和为π,tanA=tan(π-C-B)=-tan(B+C),利用正切公式求出tanA,再求cosA.
解答:解:∵若tanA=2tanB=3tanC,∴tanB=
1
2
tanA,tanC=
1
3
tanA,
在△ABC中,A+B+C=π,
∴tanA=tan(π-C-B)=-tan(B+C)=-
tanB+tanC
1-tanBtanC
=-
1
2
tanA+
1
3
tanA
1-
1
6
tanAtanA
⇒1-
1
6
tan2A=
5
6
⇒tan2A=11,
∵tanA=2tanB=3tanC>0,0<A<
π
2
,∴tanA=
11

1
cosA
=
1+tan2A
=
12

∴cosA=
1
12
=
3
6

故答案为
3
6
点评:本题考查了两角和的正切函数,考查了同角三角函数基本关系式,考查学生的运算能力,利用条件求tanA是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若tanA+tanB+tanC=1,则tanAtanBtanC=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-
1
2
,则cosA=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若tanA=-2,则cosA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取得的点到O距离大小1的概率为1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形,其中正确命题的序号是
①②④
①②④

查看答案和解析>>

同步练习册答案