| A. | 2x+y-2=0 | B. | 2x-y-2=0 | C. | x+y-2=0 | D. | y=0 |
分析 求出原函数的导函数,求出切点坐标,切线的斜率,然后由直线方程的点斜式得曲线y=f(x)在点(1,f(1))处的切线方程.
解答 解:由函数f(x)=2(x-$\frac{1}{x}$)-2ln x,f(1)=0.
得y′=2+$\frac{2}{{x}^{2}}$-$\frac{2}{x}$,
∴y′|x=1=2.即曲线f(x)=2(x-$\frac{1}{x}$)-2ln 在点(1,0)处的切线的斜率为:2.
∴曲线f(x)=2(x-$\frac{1}{x}$)-2ln 在点(1,0)处的切线方程为y-0=2×(x-1),
整理得:2x-y-2=0.
故选:B.
点评 本题考查利用导数研究曲线上某点处的切线方程,曲线上过某点处的切线的斜率,就是函数在该点处的导数值,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com