精英家教网 > 高中数学 > 题目详情
2.下列命题:
①常数列既是等差数列又是等比数列;
②若直线l:y=kx-$\sqrt{3}$与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是($\frac{π}{6}$,$\frac{π}{2}$);
③若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$
④如果(a-2)x2+(a-2)x-1≤0对任意实数x总成立,则a的取值范围是[-2,2].
其中所有正确命题的序号是②④.

分析 ①当常数列的项是0时,不是等比数列;
②利用数形结合求出直线l的倾斜角取值范围即可;
③当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,有$\overrightarrow{a}$•$\overrightarrow{b}$=0;
④根据不等式恒成立,求出a的取值范围.

解答 解:对于①,当常数列的项是0时,它是等差数列,不是等比数列,∴①错误;
对于②,如图所示,直线l:y=kx-$\sqrt{3}$是过定点(0,-$\sqrt{3}$)的直线,
与直线2x+3y-6=0的交点位于第一象限时,
直线PA的斜率是$\frac{0+\sqrt{3}}{3-0}$=$\frac{\sqrt{3}}{3}$,对应的倾斜角为$\frac{π}{6}$,
直线PB的斜率不存在,对应的倾斜角为$\frac{π}{2}$,
∴直线l的倾斜角取值范围是($\frac{π}{6}$,$\frac{π}{2}$),②正确;
对于③,当$\overrightarrow{a}$•$\overrightarrow{b}$=0时,$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$或$\overrightarrow{a}$⊥$\overrightarrow{b}$,∴③错误;
对于④,(a-2)x2+(a-2)x-1≤0对任意实数x总成立,
则a=2$\left\{\begin{array}{l}{a-2<0}\\{{(a-2)}^{2}-4(a-2)•(-1)≤0}\end{array}\right.$
-2≤a≤-2
∴a的取值范围是[-2,2],④正确.
综上,正确的命题是②④.
故答案为:②④.

点评 本题考查了等差与等比数列的应用问题,也考查了直线的斜率与倾斜角的应用问题,考查了平面向量的数量积以及不等式的恒成立问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知(5x2+$\frac{1}{{x}^{2}}$+1)5的展开式中,x2项的系数为2025.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆C的方程为x2+y2+2x-8=0,则圆C关于点(1,-2)对称的圆的方程为(  )
A.(x+2)2+(y+2)2=9B.(x+2)2+(y+2)2=3C.(x-3)2+(y+4)2=9D.(x-3)2+(y+4)2=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,底面是直角梯形,AD∥BC,AB⊥AD,PA⊥底面ABCD,PA=AD=4,AB=1,BC=2,过A作AM⊥PC交PC于M.
(1)判断AM与平面PCD是否垂直,并说明理由;
(2)AM与平面PBC所成的角是否大于30°?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线l过点(1,2)且与双曲线$\frac{x^2}{4}-{y^2}=1$斜率为正的渐近线垂直,则直线l的一般式方程是2x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的一条渐近线与直线x-2y+6=0互相垂直,则此双曲线的离心率是(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在如下的2×2列联表中,若分类变量X和Y有关系,比值相差大的应该是(  )
X1X2总计
Y1aba+b
Y2cdc+d
总计a+cb+da+b+c+d
A.$\frac{a}{a+b}$与$\frac{c}{c+d}$B.$\frac{a}{c+d}$与$\frac{c}{a+b}$C.$\frac{a}{a+d}$与$\frac{c}{b+c}$D.$\frac{a}{b+d}$与$\frac{c}{a+c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知角A,B,C所对的边分别为a,b,c,且c(acosB-bcosA)=2b2,则$\frac{sinA}{sinB}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量X的概率分布列如表所示:且X的数学期望EX=6,则(  )
X5678
p0.4ab0.1
A.a=0.3,b=0.2B.a=0.2,b=0.3C.a=0.4,b=0.1D.a=0.1,b=0.4

查看答案和解析>>

同步练习册答案