精英家教网 > 高中数学 > 题目详情
10.已知f(x)=loga(x+1),g(x)=loga(1-x),a>0且a≠1,则使f(x)-g(x)>0成立的x的集合是当0<a<1时,原不等式的解集为{x|-1<x<0};当a>1时,原不等式的解集为{x|0<x<1}.

分析 利用函数的奇偶性整理不等式为loga(x+1)>loga(1-x),对底数a分类讨论得出x的范围.

解答 解:f(x)-g(x)>0,即 loga(x+1)-loga(1-x)>0,loga(x+1)>loga(1-x).
当0<a<1时,上述不等式等价于$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1<1-x}\end{array}\right.$,解得-1<x<0;
当a>1时,原不等式等价于$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1>1-x}\end{array}\right.$,解得0<x<1.
综上所述,当0<a<1时,原不等式的解集为{x|-1<x<0};
当a>1时,原不等式的解集为{x|0<x<1}.
故答案为:当0<a<1时,原不等式的解集为{x|-1<x<0};a>1时,原不等式的解集为{x|0<x<1}.

点评 本题考查不等式的解法,对底数a的分类讨论是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数y=f(x)的定义域是[$\frac{1}{2}$,2],则函数y=f(log2x)的定义域为(  )
A.[-1,1]B.[1,2]C.[$\sqrt{2}$,4]D.[$\sqrt{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列{an}中,a2=1,a4=4,则a6=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一元二次不等式x2+bx+c≤0的解集为[-2,5],则bc=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.集合A={x||x+1|<4},B={x|(x-1)(x-2a)<0}.
(1)求A、B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲厂以x千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x+1-$\frac{3}{x}$)元.
(1)写出生产该产品t(t≥0)小时可获得利润的表达式;
(2)要使生产该产品2 小时获得的利润不低于3000元,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在圆内接四边形ABCD中,AC与BD交于点E,过点A作圆的切线交CB的延长线于点F,若AB=AD,AD∥FC,AF=18,BC=15,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在坐标平面xoy内,点A(x,y)(不是原点)的“k-相好点”B是指:满足|OA|•|OB|=k(O为坐标原点)且在射线OA上的点,若点P1,P2,…P2017是直线y=-2x+10上的2017个不同的点,他们的“10-相好点”分别是${P_1}^/,{P_2}^/,…{P_{2017}}^/$
(1)若P1(2,6),求${P_1}^/$的坐标;
(2)证明:点${P_1}^/,{P_2}^/,…{P_{2017}}^/$共圆,并求出圆的方程C;
(3)判断第(2)问中的圆C与直线(3+3λ)x-(4+λ)y-3λ=0(λ∈R)的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线ax+by-1=0(其中a>0且b>0)被圆x2+y2-4x-2y+1=0截得的弦长为16,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.16B.8C.4D.2

查看答案和解析>>

同步练习册答案