精英家教网 > 高中数学 > 题目详情
19.已知四个数,前三个数成递增等差数列且和为9,后三个数成等比数列且和为21,求此四个数.

分析 首先设出前三个数,然后利用等比数列的性质得到第四个数,再由已知列式求得答案.

解答 解:设前三个数为a-d,a,a+d(d>0),则第四个数为$\frac{(a+d)^{2}}{a}$,
由题意得:$\left\{\begin{array}{l}{3a=9}\\{2a+d+\frac{(a+d)^{2}}{a}=21}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=3}\\{d=3}\end{array}\right.$,
∴这四个数分别为:0,3,6,12.

点评 本题考查了等差数列和等比数列的通项公式,关键是由已知设出对应的数,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx.
(Ⅰ)求过点(0,0),曲线y=f(x)的切线方程;
(Ⅱ)设函数g(x)=f(x)-ex,求证:函数g(x)有且只有一个极值点;
(Ⅲ)若f(x)≤a(x-1)恒成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求(9x+$\frac{1}{3\sqrt{x}}$)18展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{1}{3}$x3+x2+mx在区间(-2,2)上单调递减,则实数m的取值范围是(-∞,-8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用反证法证明:若函数f(x)在区间[a,b]上是增函数,则方程f(x)=0在区间[a,b]上至多有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数在给定区间上的最大值与最小值
(1)f(x)=6x2+x+2,x∈[-1,1],
(2)f(x)=x3-12x,x∈[-3,3];
(3)f(x)=6-12x+x3,x∈[-$\frac{1}{3}$,1]
(4)f(x)=48x-x3,x∈[-3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动圆P与圆C1:(x+5)2+y2=49和圆C2:(x-5)2+y2=1,分别求满足下列条件的动圆圆心P的轨迹方程.
(1)圆P与圆C1,圆C2都外切;
(2)圆P与圆C1,圆C2都内切;
(3)圆P与圆C1外切,圆C2内切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若方程(x-1)4+mx-m-2=0各个实根x1,x2,…,xk(k≤4,k∈N*)所对应的点$({x_i},\frac{2}{{{x_i}-1}})$,(i=1,2,…,k)均在直线y=x的同侧,则实数m的取值范围是(  )
A.(-1,7)B.(-∞,-7)∪(-1,+∞)C.(-7,1)D.(-∞,1)∪(7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l过点(0,1),而且它与抛物线y2=4x仅有一个交点,则满足条件的直线l的条数为3.

查看答案和解析>>

同步练习册答案