精英家教网 > 高中数学 > 题目详情
4.若集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},求a的值使得∅?A∩B与A∩C同时成立.

分析 求出集合B,C,利用∅?A∩B与A∩C同时成立,求解a即可.

解答 解:B={x|x2-5x+6=0}={2,3},C={x|x2+2x-8=0}={2,-4},
∅?A∩B与A∩C同时成立,
可得A是非空集合,
当2∈A时,可得4-2a+a2-19=0,解得a=-3或5.此时A={2,-5}或A={2,3}.
当2∉A时,则A={3,-4}
可得:$\left\{\begin{array}{l}3-4=a\\ 3×(-4)={a}^{2}-19\end{array}\right.$,方程组无解.
综上a=-3或5.

点评 本题考查函数与方程的应用,集合的关系的运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3x-{x}^{2}-2}$的定义域为A,函数f(x)=a-2x-x2的值域为B.
(1)若(∁R A)∪B=R,求a的取值范围;
(2)设集合C={x|x2-(a+a2)x+a3<0},若A∩C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x的集合:在什么区间上是增函数?在什么区间上是减函数?
(1)y=$\sqrt{2}$+$\frac{sinx}{π}$,x∈R   (2)y=3-2cosx,x∈R (3)函数y=sin(-3x+$\frac{π}{4}$)  (4)函数y=3cos(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sin(2x-$\frac{π}{4}$)-2$\sqrt{2}$sin2x的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}中,公比q>1,a1+a7=27,a3•a5=72,则$\frac{{a}_{13}}{{a}_{5}}$=(  )
A.4B.4或8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知($\sqrt{x}$+$\frac{1}{2}$$\root{4}{\frac{1}{x}}$)n展开式中,前三项系数成等差数列,求展开式中所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1、F2,且|F1F2|=2,过F2的弦为AB,三角形F1AB的周长为12,则b=(  )
A.2$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α,β均为锐角,且sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,则tan(α-β)=(  )
A.$\frac{\sqrt{7}}{3}$B.-$\frac{\sqrt{7}}{3}$C.±$\frac{\sqrt{7}}{3}$D.-$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数(2λ2+5λ+2)+(λ2+λ-2)i为虚数,则实数λ满足(  )
A.λ=-$\frac{1}{2}$B.λ=-2或-$\frac{1}{2}$C.λ≠-2D.λ≠1且λ≠-2

查看答案和解析>>

同步练习册答案