精英家教网 > 高中数学 > 题目详情
证明:若f(x)的图象关于(a,0)对称,且关于x=b(a≠b)对称,则T=4|a-b|.
考点:函数的周期性
专题:函数的性质及应用
分析:根据中心对称,轴对称得出f(x)=-f(2a-x)=-f(2b-(2a-x))=-f(2b-2a+x),再变换f(x)=-f(2b-2a+x),得证明.
解答: 解:∵f(x)的图象关于(a,0)对称,关于x=b(a≠b)对称
∴f(x)=-f(2a-x)=-f(2b-(2a-x))=-f(2b-2a+x),
即f(x)=-f(2b-2a+x)
∴f(x)=f(4b-4a+x),
∴f(x)是周期函数,周期为4b-4a,
∴最小正周期为:T=4|a-b|.
点评:本题考查了函数的对称性,与解析式的理解,注意变换,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F(-3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(-1,1),求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出下列函数的图象,并写出它的定义域、值域、单调区间、最大最小值.
(1)y=2|x|-1;
(2)y=|2x-1|;
(3)y=x2-4|x|+3;
(4)y=|x2-4x+3|.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:若f(x)对定义域内的任意x都有f(x+a)=
1-f(x)
1+f(x)
(a≠0),则T=2a.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x=(a1,a2,a3,a4,a5),ai=0,1,i=1,2,3,4,5}.若a,b∈M,定义其“距离”d(a,b)=
5
i=1
|ai-bi|;给出以下命题:
(1)M中所有元素的个数为5!;
(2)若
5
i=1
ai2=0,b1b2b3b4b5=1,则d(a,b)=5;
(3)若a,b,c∈M,则d(a,b)+d(b,c)≥d(c,a);
(4)设W⊆M且W中任意两个元素之间的距离大于2,则|W|的最大值为4(|W|表示集合W的元素的个数)
以下命题中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若α是一个三角形的内角,且sinα+cosα=α(0<α<1),则这个三角形是(  )
A、等边三角形
B、直角三角形
C、锐角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在一个非零常数T,使得定义在R上的函数y=f(x)满足f(x-T)=Tf(x)对任意实数x恒成立,则称函数f(x)为“T周转函数”,现有如下命题:
①当T=-1时,T周转函数f(x)是以2为周期的周期函数;
②函数f(x)=x一定是一个T周转函数;
③函数f(x)=sinπx一定是一个T周转函数;
④若f(x)为一个2周转函数,且x∈[0,2],f(x)=1-|x-1|,则函数F(x)=xf(x)-1的零点的个数为5.
其中的真命题有
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=lg[log
1
2
(1+tanx)]的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
-cos2
x
2
-
1
2

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)y=sinx经过如何变换得到y=f(x);
(Ⅲ)若f(α)=
3
2
10
,求sin2α的值.

查看答案和解析>>

同步练习册答案