【题目】现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(1)求该射手恰好命中一次得的概率;
(2)求该射手的总得分X的分布列及数学期望EX.
【答案】
(1)解:记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D
由题意知P(B)=
,P(C)=P(D)= ![]()
由于A=B
+
+ ![]()
根据事件的独立性和互斥性得
P(A)=P(B
)+P(
)+P(
)=P(B)P(
)P(
)+P(
)P(C)P(
)+P(
)P(
)P(D)
=
×(1﹣
)×(1﹣
)+(1﹣
)×
×(1﹣
)+(1﹣
)×(1﹣
)× ![]()
= ![]()
(2)解:根据题意,X的所有可能取值为0,1,2,3,4,5
根据事件的对立性和互斥性得
P(X=0)=P(
)=(1﹣
)×(1﹣
)×(1﹣
)= ![]()
P(X=1)=P(B
)=
×(1﹣
)×(1﹣
)= ![]()
P(X=2)=P(
+
)=P(
)+P(
)=(1﹣
)×
×(1﹣
)+(1﹣
)×(1﹣
)×
= ![]()
P(X=3)=P(BC
)+P(B
D)=
×
×(1﹣
)+
×(1﹣
)×
= ![]()
P(X=4)=P(
)=(1﹣
)×
×
= ![]()
P(X=5)=P(BCD)=
×
×
= ![]()
故X的分布列为
X | 0 | 1 | 2 | 3 | 4 | 5 |
P |
|
|
|
|
|
|
所以E(X)=0×
+1×
+2×
+3×
+4×
+5×
= ![]()
【解析】(1)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由于A=B
+
+
,根据事件的独立性和互斥性可求出所求;(2)根据题意,X的所有可能取值为0,1,2,3,4,根据事件的对立性和互斥性可得相应的概率,得到分布列,最后利用数学期望公式解之即可.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的两个顶点分别为
和
,两个焦点分别为
和
(
),过点
的直线
与椭圆相交于另一点
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线
上有一点
(
)在
的外接圆上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(sinx,1),
=(
Acosx,
cos2x)(A>0),函数f(x)=
的最大值为6.
(1)求A;
(2)将函数y=f(x)的图象像左平移
个单位,再将所得图象各点的横坐标缩短为原来的
倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,
]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出
的值为 ( )
(参考数据:
)
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为
,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若
q是
p的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,
,PA=2,E是PC上的一点,PE=2EC.![]()
(1)证明:PC⊥平面BED;
(2)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.
(1)求a的值;
(2)若
恒成立,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com