精英家教网 > 高中数学 > 题目详情

【题目】选修4﹣5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范围.

【答案】
(1)

解:由|ax+1|≤3得﹣4≤ax≤2

∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.

∴当a≤0时,不合题意;

当a>0时,

∴a=2;


(2)

解:记

∴h(x)=

∴|h(x)|≤1

恒成立,

∴k≥1.


【解析】(1)先解不等式|ax+1|≤3,再根据不等式f(x)≤3的解集为{x|﹣2≤x≤1},分类讨论,即可得到结论.(2)记 ,从而h(x)= ,求得|h(x)|≤1,即可求得k的取值范围.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(1)求该射手恰好命中一次得的概率;
(2)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣2x﹣3,定义数列{ xn}如下:x1=2,xn+1是过两点P(4,5),Qn( xn , f(xn))的直线PQn与x轴交点的横坐标.
(1)证明:2≤xn<xn+1<3;
(2)求数列{ xn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|ax2+2x+1=0aR}

1)若A只有一个元素,试求a的值,并求出这个元素;

2)若A是空集,求a的取值范围;

3)若A中至多有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C0 ,动圆C1 .点A1 , A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2 与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2 . 若矩形ABCD与矩形A′B′C′D′的面积相等,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数满足.且

(1)求的解析式;

(2)若在区间[-1,1]上不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;

若p为:x∈R,x2+2x+2≤0,则p为:x∈R,x2+2x+2>0;

若椭圆的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16;

若a<0,-1<b<0,则ab>ab2>a.

所有正确命题的序号为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)

(1)求的值;

(2)求,求的值;

(3)画出函数的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的六个命题:

①线性回归直线必过样本数据的中心点

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于1;

⑤残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高;

⑥甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.

其中真命题的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案