精英家教网 > 高中数学 > 题目详情

直线,圆方程为
(1)求证:直线和圆相交
(2)当圆截直线所得弦最长时,求的值
(3)直线将圆分成两个弓形,当弓形面积之差最大时,求直线方程

(1)定点(3,0)在圆内 ,所以直线与圆相交;
(2);(3)

解析试题分析:(1)定点(3,0)在圆内 ,所以直线与圆相交   4分    
(2)    4分
(3)     4分
考点:本题主要考查直线方程,直线与圆的位置关系。
点评:中档题,研究直线与圆的位置关系,半径、弦长一半、圆心到直线的距离所构成的“特征三角形”是重点,考查知识覆盖面广,对考生计算能力、数形结合思想有较好考查。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(Ⅰ)若相切,求的值;
(Ⅱ)是否存在值,使得相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,过点作直线与圆交于两点。

(1)若坐标原点O到直线AB的距离为,求直线AB的方程;
(2)当△的面积最大时,求直线AB的斜率;
(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(1)求证:直线与圆恒相交;
(2)当时,过圆上点作圆的切线交直线点,为圆上的动点,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分,第1小题4分,第2小题6分,第3小题6分)
设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,且△AB1B2是面积为的直角三角形.过1作直线l交椭圆于PQ两点.
(1) 求该椭圆的标准方程;
(2) 若,求直线l的方程;
(3) 设直线l与圆Ox2+y2=8相交于MN两点,令|MN|的长度为t,若t,求△B2PQ的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,曲线的参数方程是
是参数).
(1)写出曲线的直角坐标方程和曲线的普通方程;
(2)求的取值范围,使得没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于
点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,圆C:,直线.
(1) 当a为何值时,直线与圆C相切;
(2) 当直线与圆C相交于A、B两点,且时,求直线的方程.

查看答案和解析>>

同步练习册答案