精英家教网 > 高中数学 > 题目详情
8.已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数$\overline z$是$\overline z$=$\frac{1}{2}$+$\frac{1}{2}$i.

分析 根据复数的四则运算先进行化简,然后根据共轭复数的定义进行求解.

解答 解:∵z(1+i)=1,
∴z=$\frac{1}{1+i}$=$\frac{1-i}{(1-i)(1+i)}$=$\frac{1}{2}$-$\frac{1}{2}$i,
则z的共轭复数$\overline z$=$\frac{1}{2}$+$\frac{1}{2}$i,
故答案为:$\overline z$=$\frac{1}{2}$+$\frac{1}{2}$i

点评 本题主要考查复数的运算以及共轭复数的求解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在三角形ABC中,A=45°,a=$\sqrt{2}$,$\sqrt{3}$<b<2,则满足条件的三角形有(  )个.
A.1B.2C.0D.与c有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={x|ax2-3x+2=0}.若A=∅,则实数a的取值范围为($\frac{9}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数的最小值是2的为(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.y=x+$\frac{1}{x-1}$(x>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(I)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).
年份x12345
收入y(千元)2124272931
其中$\sum_{i=1}^{5}$xiyi=421,$\sum_{i=1}^{5}$xi2=55,$\overline{y}$=26.4
附1:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
(II)如表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:
受培时间一年以上受培时间不足一年总计
收入不低于平均值602080               
收入低于平均值101020
总计7030100
完成上表,并回答:能否在犯错概率不超过0.05的前提下认为“收入与接受培训时间有关系”.
附2:
P(K2≥k00.500.400.100.050.010.005
k00.4550.7082.7063.8416.6357.879
附3:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.(n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α,β均为锐角,且sinα=$\frac{{\sqrt{26}}}{26}$,tanβ=$\frac{2}{3}$.
(1)求α+β的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知p:|x-1|≤1,q:x2-2x-3≥0,则p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,已知a4=7,a3+a6=16,则公差d为(  )
A.-2B.2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.推理“①矩形是平行四边形;②三角形不是平行四边形;③所以三角形不是矩形.”中的大前提是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案