精英家教网 > 高中数学 > 题目详情

【题目】某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准如下:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知某学校学生的原始成绩均分布在[50,100]内,为了了解该校学生的成绩,抽取了50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出样本频率分布直方图如图所示.

(Ⅰ)求图中x的值,并根据样本数据估计该校学生学业水平测试的合格率;

(Ⅱ)在选取的样本中,从70分以下的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中成绩为D等级的人数,求随机变量X的分布列和数学期望.

【答案】(Ⅰ) 0.96 (Ⅱ)分布列见解析

【解析】试题分析:利用频率分布直方图的性质得x值;找出60分以上的概率求和得结果

先确定C D等级的人数,利用超几何分布得出结果

试题解析:

(Ⅰ)由题意可知,10x+0.012×10+0.056×10+0.018×10+0.010×10=1,

∴x=0.004.

∴合格率为1-10×0.004=0.96.

(Ⅱ)样本中C等级的学生人数为0.012×10×50=6,

而D等级的学生人数为0.004×10×50=2.

∴随机抽取3人中,成绩为D等级的人数X的可能取值为0,1,2,

∴X的分布列为

x

0

1

2

P

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数= x·ex ,若对任意的,都有成立,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,曲线C1的参数方程为t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2

(Ⅰ)求曲线C1C2的直角坐标方程,并分别指出其曲线类型;

(Ⅱ)试判断:曲线C1C2是否有公共点?如果有,说明公共点的个数;如果没有,请说明理由;

(Ⅲ)设是曲线C1上任意一点,请直接写出a + 2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数).

(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;

(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查“五一”小长假出游选择“有水的地方”是否与性别有关,现从该市“五一”出游旅客中随机抽取500人进行调查,得到如下2×2列联表:(单位:人)

选择“有水的地方”

不选择“有水的地方”

合计

90

110

200

210

90

300

合计

300

200

500

(Ⅰ)据此样本,有多大的把握认为选择“有水的地方”与性别有关;

(Ⅱ)若以样本中各事件的频率作为概率估计全市“五一”所有出游旅客情况,现从该市的全体出游旅客(人数众多)中随机抽取3人,设3人中选择“有水的地方”的人数为随机变量X,求随机变量X的数学期望和方差.

附临界值表及参考公式:

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在 上的值域是 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(a﹣1)x2﹣x+2=0}有且只有一个元素,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+)= ,曲线C的参数方程为 (α为参数).

(1)求直线l的普通方程;

(2)若P是曲线C上的动点,求点P到直线l的最大距离及点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,.

(1) 的单调区间;

(2) ,求满足的实数的取值集合.

查看答案和解析>>

同步练习册答案