精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是

【答案】[0,1]∪[9,+∞)
【解析】解:当m=0时,f(x)= , 值域是[0,+∞),满足条件;
当m<0时,f(x)的值域不会是[0,+∞),不满足条件;
当m>0时,f(x)的被开方数是二次函数,△≥0,
即(m﹣3)2﹣4m≥0,∴m≤1或 m≥9.
综上,0≤m≤1或 m≥9,
∴实数m的取值范围是:[0,1]∪[9,+∞),
所以答案是:[0,1]∪[9,+∞).
【考点精析】解答此题的关键在于理解函数的值域的相关知识,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移m(m>0)个单位长度,得到函数y=f(x)图象在区间 上单调递减,则m的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列
(1)在等差数列{an}中,a6=10,S5=5,求该数列的第8项a8
(2)在等比数列{bn}中,b1+b3=10,b4+b6= ,求该数列的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 且函数y=f(x)﹣x恰有3个不同的零点,则实数a的取值范围是(
A.(0,+∞)
B.[﹣1,0)
C.[﹣1,+∞)
D.[﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 .(t为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=acosθ,(a>0)
(1)求直线l和曲线C的普通方程;
(2)若直线l与曲线C相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(1)求证:f(x)≥5;
(2)若对任意实数x,15﹣2f(x)<a2+ 都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )﹣cos2x. (Ⅰ)求f( )的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷“与性别有关?

非体育迷

体育迷

合计

10

55

合计

查看答案和解析>>

同步练习册答案