精英家教网 > 高中数学 > 题目详情
6.将由曲线y=cosx,直线x=0,x=π,y=0所围成图形的面积写成定积分的形式为(  )
A.${∫}_{0}^{π}$cosxdxB.${∫}_{0}^{\frac{π}{2}}$cosxdx+|${∫}_{\frac{π}{2}}^{π}$cosxdx|
C.${∫}_{0}^{π}$2sinxdxD.${∫}_{0}^{π}$2|cosx|dx

分析 根据余弦函数图象,用定积分表示出封闭图形的面积即可.

解答 解:曲线y=cosx,直线x=0,x=π,y=0所围成图形的面积为${∫}_{0}^{\frac{π}{2}}$cosxdx+|${∫}_{\frac{π}{2}}^{π}$cosxdx|,
故选:B.

点评 本题考查利用定积分求面积,解题的关键是确定被积区间与被积函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)是奇函数且满足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,则f(2010)+f(2012)=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于R上可导的函数f(x),若a>b>1,且有(x-1)f′(x)>0则必有(  )
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.O为△ABC的外心,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,∠BAC为钝角,M在BC上,且$\overrightarrow{BM}$=2$\overrightarrow{MC}$,则$\overrightarrow{AM}$$•\overrightarrow{AO}$的值是(  )
A.4B.$\frac{14}{3}$C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y-1≤0}\\{x≥-1}\end{array}\right.$,则x2+(y+2)2的取值范围是(  )
A.[$\frac{1}{2}$,17]B.[1,17]C.[1,$\sqrt{17}$]D.[$\frac{\sqrt{2}}{2}$,$\sqrt{17}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知{an}为等差数列,a4=3,公差d=2,写出这个数列的第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的图象经过点P($\frac{π}{12}$,0),图象上与点P最近的一个最高点是Q($\frac{π}{3}$,5)
(1)求函数的解析式,
(2)画出这个函数一个周期内的图象.并求出其递减区间,
(3)若存在x∈($\frac{π}{3}$,$\frac{3π}{4}$)使得f(x)=3,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数f(x)=cos(x+$\frac{π}{3}$)的图象上点的横坐标伸长到原来的2倍,得到的图象的一个对称中心是(  )
A.($\frac{π}{3}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{2}$,0)D.(-$\frac{π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α为锐角,cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$,则sin(α-$\frac{π}{4}$)=(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

同步练习册答案