精英家教网 > 高中数学 > 题目详情
(2013•静安区一模)已知数列{an}的各项均为非零实数,且对于任意的正整数n,都有(a1+a2+…+an)2=a13+a23+…+an3
(1)当n=3时,求所有满足条件的三项组成的数列a1、a2、a3
(2)试求出数列{an}的任一项an与它的前一项an-1间的递推关系.是否存在满足条件的无穷数列{an},使得a2013=-2012?若存在,求出这样的无穷数列{an}的一个通项公式;若不存在,说明理由.
分析:(1)利用数列递推式,n分别取1,2,3,代入计算,即可得到结论;
(2)令Sn=a1+a2+…+an,则Sn2=a13+a23+…+an3(n∈N*).从而(Sn+an+1)2=a13+a23+…+an3+an+13,两式相减,得2Sn=an+12-an+1,再写一式,两式相减,可得数列{an}的任一项an与它的前一项an-1间的递推关系;利用a1=1,a2013=-2012,所以无穷数列{an}的前2012项组成首项和公差均为1的等差数列,从第2013项开始组成首项为-2012,公比为-1的等比数列,从而可得数列的通项.
解答:解:(1)当n=1时,a12=a13,由a1≠0得a1=1.(1分)
当n=2时,(1+a2)2=1+a23,由a2≠0得a2=2或a2=-1.
当n=3时,(1+a2+a3)2=1+a23+a33,若a2=2得a3=3或a3=-2;若a2=-1得a3=1;(5分)
综上讨论,满足条件的数列有三个:1,2,3或1,2,-2或1,-1,1.(6分)
(2)令Sn=a1+a2+…+an,则Sn2=a13+a23+…+an3(n∈N*).
从而(Sn+an+1)2=a13+a23+…+an3+an+13.(7分)
两式相减,结合an+1≠0,得2Sn=an+12-an+1.(8分)
当n=1时,由(1)知a1=1;
当n≥2时,2an=2(Sn-Sn-1)=(an+12-an+1)-(an2-an),即(an+1+an)(an+1-an-1)=0,
所以an+1=-an或an+1=an+1.(12分)
又a1=1,a2013=-2012,所以无穷数列{an}的前2012项组成首项和公差均为1的等差数列,从第2013项开始组成首项为-2012,公比为-1的等比数列.
an=
n(1≤n≤2012)
2012•(-1)n(n>2012)
.(14分)
点评:本题考查数列递推式,考查数列通项的探究,考查学生分析解决问题的能力,确定数列{an}的任一项an与它的前一项an-1间的递推关系是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•静安区一模)已知O是△ABC外接圆的圆心,A、B、C为△ABC的内角,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m•
AO
,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)设P是函数y=x+
2
x
(x>0)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A、B,则
PA
PB
的值是
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知函数f(x)=
1
2
sin(2ax+
7
)的最小正周期为4π,则正实数a=
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)等比数列{an}(n∈N*)中,若a2=
1
16
a5=
1
2
,则a12=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)两条直线l1:3x-4y+9=0和l2:5x+12y-3=0的夹角大小为
arccos
33
65
arccos
33
65

查看答案和解析>>

同步练习册答案