【题目】
为了保护环境,发展低碳经济,某单位在政府部门的支持下,进行技术攻关,采用了新工艺,新上了把二氧化碳转化为一种可利用的化工产品的项目.经测算,月处理成本(元)与月处理量(吨)之间的函数关系可以近似的表示为:,且每处理一吨二氧化碳可得到能利用的化工产品价值为200元,若该项目不获利,政府将补贴.
(I)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
【答案】(I)需补贴;(II).
【解析】
试题分析:(I)当时,获利是,费用是,两者差是二次函数,用配方法可知该项目不会获利;(II)平均处理成本即,当时,,所以当时,取得最小值. 当时,,当每月处理量为吨时,才能使每吨的平均处理成本最低.
试题解析:
(I)当时,设该项目获利为,则
所以当时,,因此,该项目不会获利,
当时,取得最大值,
所以政府每月至少需要补贴5000元才能使该项目不亏损
(2)由题意可知,食品残渣的每吨平均处理成本为:
,
① 当时,,
所以当时,取得最小值240. 9分
② 当时,
,
当且仅当,即时,取得最小值200,因为200<400,所以当每月处理量为400吨时,才能使每吨的平均处理成本最低.
科目:高中数学 来源: 题型:
【题目】甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥 ,底面 是以 为直角顶点的等腰直角三角形, , ,二面角 的大小为 .
(1)求直线 与平面 所成角的大小;
(2)求二面角 的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+|x﹣1|,a∈R.
(Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的最大值及此时围成的三角形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com