已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,
·
=0,3|
|·|
|=-5
·
,|
|=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得
·
=
·
?若存在,求出实数m的取值范围;若不存在,说明理由.
科目:高中数学 来源: 题型:解答题
直线l与椭圆
+
=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=
,又椭圆经过点(
,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知顶点为原点
的抛物线
的焦点
与椭圆
的右焦点重合
与
在第一和第四象限的交点分别为
.
(1)若△AOB是边长为
的正三角形,求抛物线
的方程;
(2)若
,求椭圆
的离心率
;
(3)点
为椭圆
上的任一点,若直线
、
分别与
轴交于点
和
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设不与坐标轴平行的直线
与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为椭圆
的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点
满足:
,直线
与
的斜率之积为
,证明:存在定点
使
得
为定值,并求出
的坐标;
(3)若
在第一象限,且点
关于原点对称,
垂直于
轴于点
,连接
并延长交椭圆于点
,记直线
的斜率分别为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,一条准线l:x=2.
(1)求椭圆C的方程;
(2)设O为坐标原点,M是l上的点,F为椭圆C的右焦点,过点F作OM的垂线与以OM为直径的圆D交于P,Q两点.
①若PQ=
,求圆D的方程;
②若M是l上的动点,求证点P在定圆上,并求该定圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,
=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,焦距为
的椭圆
的两个顶点分别为
和
,且
与n
,
共线.![]()
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,
求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com