已知椭圆
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设不与坐标轴平行的直线
与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
(1)椭圆
的方程为
;(2)
面积的最大值为
.
解析试题分析:(1)求椭圆的方程,可利用待定系数法求出
的值即可,依题意,
可得:
,从而可得
的值,即得椭圆的方程;(2)由于直线l是任意的,故可设其方程为
.根据坐标原点
到直线
的距离为
,可得
与
的关系式,从而将双参数问题变为单参数问题.将
作为底边,则
的高为常数
,所以要使
的面积最大,就只需
边最大.将
用
或
表示出来便可求得
的最大值,从而求得
的面积的最大值.
试题解析:(1)依题意,
可得:![]()
![]()
所以,椭圆
;
(2)坐标原点
到直线
的距离为
,所以,![]()
联立
可得:![]()
![]()
所以, ![]()
由题意,得:
,令
,所以![]()
,
所以,
.
考点:椭圆方程,直线与圆锥曲线;点到直线的距离公式,基本不等式;弦长及三角形的面积.
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程.
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的一个焦点是F1(一3,0),一条渐近线的方程是![]()
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线
与双曲线C相交于两个不同的点M, N,且线段MN的
垂直平分线与两坐标轴围成的三角形的面积为
,求k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
与
的离心率相等. 直线
与曲线
交于
两点(
在
的左侧),与曲线
交于
两点(
在
的左侧),
为坐标原点,
.
(1)当
=
,
时,求椭圆
的方程;
(2)若
,且
和
相似,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(1)求椭圆
的方程;
(2)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,
·
=0,3|
|·|
|=-5
·
,|
|=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得
·
=
·
?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为椭圆
,
的左右焦点,
是坐标原点,过
作垂直于
轴的直线
交椭圆于
,设
.
(1)证明:
成等比数列;
(2)若
的坐标为
,求椭圆
的方程;
(3)在(2)的椭圆中,过
的直线
与椭圆
交于
、
两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别是椭圆
的左、右焦点.
(1)若
是第一象限内该椭圆上的一点,
,求点
的坐标;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且
为锐角(其
中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com