已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设不与坐标轴平行的直线
与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的离心率是
,
分别是椭圆
的左、右两个顶点,点
是椭圆
的右焦点。点
是
轴上位于
右侧的一点,且满足
.![]()
(1)求椭圆
的方程以及点
的坐标;
(2)过点
作
轴的垂线
,再作直线
与椭圆
有且仅有一个公共点
,直线
交直线
于点
.求证:以线段
为直径的圆恒过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C的顶点为O(0,0),焦点为F(0,1).![]()
(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点.若直线AO、BO分别交直线l:y=x-2于M、N两点,求|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,焦距为
的椭圆
的两个顶点分别为
和
,且
与n
,
共线.![]()
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,
求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆中心在坐标原点,焦点在x轴上,离心率为
,它的一个顶点为抛物线x2=4y的焦点.
(1)求椭圆方程;
(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(3)若斜率为1的直线交椭圆于M、N两点,求△OMN面积的最大值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足
=
,O为坐标原点.![]()
(1)求抛物线C的方程;
(2)以M点为起点的任意两条射线l1,l2的斜率乘积为1,并且l1与抛物线C交于A,B两点,l2与抛物线C交于D,E两点,线段AB,DE的中点分别为G,H两点.求证:直线GH过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动直线
与椭圆![]()
交于![]()
、![]()
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明
和
均为定值;
(2)设线段
的中点为
,求
的最大值;
(3)椭圆
上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设F1,F2分别是椭圆E:x2+
=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com