如图,已知椭圆
的离心率是
,
分别是椭圆
的左、右两个顶点,点
是椭圆
的右焦点。点
是
轴上位于
右侧的一点,且满足
.![]()
(1)求椭圆
的方程以及点
的坐标;
(2)过点
作
轴的垂线
,再作直线
与椭圆
有且仅有一个公共点
,直线
交直线
于点
.求证:以线段
为直径的圆恒过定点,并求出定点的坐标.
(1)
;(2)定点坐标为
,证明见详解.
解析试题分析:(1)设
,然后利用
建立关于
的方程,然后利用
得到
的方程,两方程结合消去
可得到
的关系,再由条件中的离心率得到
的关系,进行通过解方程组可求得
的值,进行可求得椭圆的方程,以及点
的坐标;(2)设
.将直线代入椭圆方程消去
的得到
的二次方程,利用韦达定理可利用
表示点
的坐标.又设以线段
为直径的圆上任意一点
,然后利用
可求得圆的方程,再令
,取
时满足上式,故过定点
.
试题解析:(1)
,设
,
由
有
,
又
,
,
于是![]()
,
又
,![]()
,
又
,
,椭圆
,且
.
(2)
,设
,由![]()
![]()
,
由于
(*),
而由韦达定理:
,
,
,
设以线段
为直径的圆上任意一点
,
由
有
,
由对称性知定点在
轴上,令
,取
时满足上式,故过定点
.
考点:1、椭圆方程及几何性质;2、直线与椭圆的位置关系;3、圆的方程;4、证明定点问题.
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的一个焦点是F1(一3,0),一条渐近线的方程是![]()
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线
与双曲线C相交于两个不同的点M, N,且线段MN的
垂直平分线与两坐标轴围成的三角形的面积为
,求k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为椭圆
,
的左右焦点,
是坐标原点,过
作垂直于
轴的直线
交椭圆于
,设
.
(1)证明:
成等比数列;
(2)若
的坐标为
,求椭圆
的方程;
(3)在(2)的椭圆中,过
的直线
与椭圆
交于
、
两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别是椭圆
的左、右焦点.
(1)若
是第一象限内该椭圆上的一点,
,求点
的坐标;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且
为锐角(其
中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2
,1)到两焦点的距离之和为4
.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于A,B两点,其中点A在x轴下方,且
=3
.求过O,A,B三点的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
,
分别是椭圆
:
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
,
两点,
到直线
的距离为
,连结椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆
的方程;
(2)过椭圆
的左顶点
作直线
交椭圆
于另一点
, 若点
是线段
垂直平分线上的一点,且满足
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P,Q两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4
.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足
+
=t
(O为坐标原点),当|
-
|<
时,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com