精英家教网 > 高中数学 > 题目详情

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OAl的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.

(1) (2)不存在

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.

(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M
(1)求椭圆C的方程;
(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的离心率是分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点轴上位于右侧的一点,且满足

(1)求椭圆的方程以及点的坐标;
(2)过点轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆Cy2=1,AB是四条直线x=±2,y=±1所围成的两个顶点.
 
(1)设P是椭圆C上任意一点,若mn,求证:动点Q(mn)在定圆上运动,并求出定圆的方程;
(2)若MN是椭圆C上两上动点,且直线OMON的斜率之积等于直线OAOB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C的顶点为O(0,0),焦点为F(0,1).

(1)求抛物线C的方程;
(2)过点F作直线交抛物线CAB两点.若直线AOBO分别交直线lyx-2于MN两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点为抛物线x2=4y的焦点.
(1)求椭圆方程;
(2)若直线yx-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(3)若斜率为1的直线交椭圆于MN两点,求△OMN面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.

(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线轴的交点为定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

F1F2分别是椭圆Ex2=1(0<b<1)的左、右焦点,过F1的直线lE相交于AB两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.

查看答案和解析>>

同步练习册答案